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ABSTRACT

Efforts in the software engineering community to reuse code are hampered by a lack

of tools. Reusability is particularly beneficial in a rapid prototyping environment. Rapid

prototyping with automated reusable software Lomponent retrieval is a software

development method to rapidly construct and adapt software, validate and refine

requirements, and check the consistency of proposed designs. This dissertation describes

a tool used within the Computer Aided Prototyping System (CAPS), developed at the Naval

Postgraduate School, which retrieves reusable components from a software base using a

formal specification as the search key. The query specification that represents a design

requirement is compared to formal specifications of Ada reusable software components

stored in an object-oriented database management system. A syntactic search compares

specification interfaces, identifying reusable candidates based on types of parameters.

The semantic search rank orders a set of candidate components based on semantic

similarity to the query. The method, called query by consistency, compares terms that are

reduced in the axioms of each specification. Specifications are normalized to facilitate the

matching between query specifications and reusable component specifications in the

retrieval. A formal proof verifies that query by consistency can retrieve components

guaranteed to meet specified requirements.
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I. INTRODUCTION

Efforts in the software engineering community to reuse code are hampered by a lack

of tools. Some of the major issues that make software reuse difficult are component

classification, retrieval, composition and library maintenance. Research in these areas

is needed to attain the potential increases in productivity, quality, and reliability. This

dissertation focuses on computer-aided retrieval of reusable software components.

A. THE NEED FOR A RFTRIEVAL MECHANISM

The purpose of this research is to enhance the practice of software reuse by providing a

means to retrieve reusable software components from a library, or software base, by

matching a user's query, a formal specification, to the specifications of stored software

components. The tool described herein will become part of a rapid prototyping system

whose aim is to provide automated mechanisms to create software prototypes of complex

real-time systems. An integral part of the prototyping system is the software base, a large

collection of reusable components. The software base will provide prototype designers with

the means to quickly locate components and integrate them into new applications.

The key to locating components in this system is a powerful retrieval mechanism that

uses the syntax and semantics of the prototype language description of each object. This

method contrasts with another popular method used today, that of classification schemes.

The classification scheme approach attempts to store and retrieve components based on

attributes whose values are selected from a finite set of keywords. Retrieving components

in this type of system requires some knowledge of the structure of the software base and

knowledge of the keyword set.

Query by formal specification requires that the user be able to express the query as a

formal specification. With respect to the focus of this dissertation, this is nct a drawback

since it is assumed that the prototyping system is based on a prototyping method that uses

formal specifications to develop and document the components that make up the prototype.

That is, the user must write formal specifications anyway, so the retrieval system takes

advantage of this fact and uses them for retrieval. Because the retrieval mechanism relies

solely on the specification, the user is not required to know anything about the structure of

the software base or any list of attributes or keywords.



B. CONTRIBUTION

This dissertation describes an automated mechanism to retrieve reusable software

components from a software base using a formal specification language. The formal

specification for each component describes its interface (syntactic description) and its

behavior (semantic description). Bnth the syntax and the semantics of a query

specification are used to identify candidate components in a software library that will

satisfy the given specification. This dissertation emphasizes the use of the semantic

description of a component for retrieval. The specific contribution of this dissertation is

the development and -.iplementation of autematic techniques to retrieve components using

the syntax and semantics of formal specifications.

C. ORGANIZATION OF CHAPTERS

Chapter II reviews the basic concepts and terms relevant to this and previous research.

The chapter summarizes past approaches to reusable component retrieval and closely

related problems, emphasizing strengths and weaknesses. Chapter III describes the model

of a system for reusable component retrieval, reviews initial assumptions, and explores

different alternatives to implement the model. Chapter IV focuses on the task of comparing

specification semantics, introduces query by consistency, and verifies the correctness of

the the process. Chapter V describes tests performed on the implemented retrieval tool and

Chapter VI evaluates the effectiveness of the retrieval tool. Chapter VII summarizes the

dissertation and suggests extensions to this research.

2



H1. TECHNICAL BACKGROUND AND PREVIOUS RESEARCH

A. INTRODUCTION

This chapter describes some technical background concerning reusable software

components and their retrieval, and reviews previous and current systems that try to solve

the reusable component retrieval problem.

The next section defines reusable software components and lists the advantages and

disadvantages of using them. Section C abstracts the component retrieval problem to an

information retrieval problem and describes the concepts of representation, search, and

measures of performance. Section D reviews ne better known approaches used to retrieve

components and Section E describes some of the actual systems that have implemented the

approaches.

B. REUSABLE SOFTWARE COMPONENTS

1. Definition

"Software reuse is the reapplication of a variety of kinds of knowledge about one

system to another similar system in order to reduce the effort of development and

maintenance of that other system." [BP89a. p. xv] Reuse extends across a wide range of

products, including documentation, analyses, domain knowledge, designs, and source

code. This is the broad view of reusability. A narrower view is code reuse, that is, the reuse

of actual source code modules. The focus of this dissertation is on the reuse of source code

modules.

2. Advantages of Code Reuse

The concept of code reuse is not new. It has been prevalent as long as people have

been programming. There already exist large program and subroutine libraries that

implement well-known algorithms in many problem domains [Stei86]. The primary

benefit of using a previously written module rather than writing your own is that you expect

to increase both productivity and quality. As Standish put it, "Software reuse has the same

advantage as theft over honest toil." [Stan84, p. 494] There are a few examples of success in

code reuse today [Prie9la, Stei86, Booc87] but reuse of modules is not as widespread as one

might expect due to the technological, managerial, and organizational issues that still

need to be resolved.

3



To make code reuse a success, several problems must be resolved including software

classification, retrieval, adaptation, composition, and library maintenance. Software

classification is the problem of categorizing the component so that it may be stored in a

repository. The class in which the component is placed must lend itself to straightforward

retrieval, the second problem. Having found the component, there is the task of adapting it

to suit one's needs and then finding a way to integrate it with the other components of your

system (adaptation and composition). Finally, there is the problem of maintaining the

collection of components and the tools for classifying, storing and retrieving them.

It is fashionable today to talk of code reuse and of large component libraries, but the

promises of increased productivity and quality remain elusive because the above issues

have not been resolved. Recently, the focus of the research in this area has been on

component classification and retrieval.

C. INFORMATION RETRIEVAL

The problem of retrieving reusable software components from a library is in general

an information retrieval problem. The research in the area of information retrieval is

extensive, most of it dedicated to keyword search and string matching algorithms in

document retrieval applications [SM83]. The important concepts from information

retrieval that relate directly to reusable software component retrieval are: 1)

representation, 2) search and 3) measures of performance.

1. Representation and Search

A general information retrieval tool has two parts. The first is the method of

representation, that is, the way the object sought is structured to facilitate retrieval. For

instance, a document may be scanned to garner a list of important keywords for the basis

of its future retrieval or a person may have to examine a finite list of keywords to select the

ones that closely relate to the document. The method of representation must necessarily

support the method used to search for the object.

The second important part of an information retrieval tool is the method of

search. Considerable research in computer science has been dedicated to search

mechanisms, most notably in database management systems and artificial intelligence.

The method of representation and the method of search work together to form a

cohesive environment for information retrieval, hence there is a tradeoff in the amount of

sophistication one applies to either part. The more refined and precise the method of

representation, the easier the search mechanism becomes. For instance, if everything one

4



must store has a unique key that can be computed and translated to a physical address, the

search for that object is trivial. On the other hand, if little effort is applied to

representation, the search for an object will be more complex.

Representation and search methods applied to reusable software component

retrieval are discussed in Section II.D.

2. Measures of Performance

How well an information retrieval system performs is based on the nature of the

objects returned for a given query. The two most important measures of performance are

precision and recall [SM83]. Given R as a set of relevant components in the database for a

query and Q as the set of components returned for the query, precision is defined as

IQr)RI :IQI

or the ratio between the number of relevant components retrieved and the total number

retrieved [RW90c]. Precision asks the question, "What percentage of the components in Q

are relevant?".

Recall is defined as:

IQrRI :IRI

the ratio between the number of relevant components retrieved and the number of relevant

components in the database. Recall asks the question, "What percentage of the relevant

components in the database did my query find?".

Precision and recall obtain ideal values when Q = R, that is, when the set of

components retrieved is exactly the same as the set of components that are relevant. In that

case, both ratios will have a value of one. Not surprisingly, there is a tradeoff between

precision and recall. For example, if a query returned every component in the database (N

components), recall would be one, but precision would be I R I /N, which is poor when N is

large and R is small. At the other extreme, suppose the query yielded one relevant

component. In this case, the precision achieves a value of one, but the recall is 1/I R I,

which is poor if R is large.

There is a caveat associated with these measures of performance since relevance

is a subjective term. It is up to the individuals performing the tests to decide which

components are relevant and which are not. This will definitely have an impact on the

values given for precision and recall. Despite this apparent misgiving, these measures of

performance are used among others (such as effort, time, presentation, and coverage) to

assess the performance of the component retrieval systems described in Section II.E as

well as in our system described in Chapters IV and V.

5



D. APPROACHES TO RETRIEVING REUSABLE COMPONENTS

As the interest in reusable software components has grown, the demand for tools that

aid in retrieving, classifying, storing, and retrieving components has increased. We are

particularly interested in and focus on those tools that offer mechanisms for component

retrieval. Almost all of the tools we have encountered in the literature use one (or more) of

three different approaches for retrieval; browsers, informal specifications, or formal

specifications. Since many of the systems use more than one of these approaches, we

review the fundamentals of each approach in this section and then describe the features

particular to each tool in Section II.E.

1 . Browsers

A browser is a general purpose, usually window-based tool for looking through

collections, categories, or hierarchies of components at various levels of abstraction

[Meye88b]. The interface can range from purely textual to sophisticated graphics. In any

case, the objective is to allow the system user to manually search for the desired component.

The notion of a browser comes from the information retrieval domain, but its

first use with respect to component retrieval was in object-oriented programming systems.

In an object-oriented system, reusability is inherent because all new objects are defined in

terms of other objects already defined in an object hierarchy. It would be nearly impossible

to manage this type of programming environment without some method to scan the

hierarchy of components to find a suitable "jumping off point". Thus we see sophisticated

graphical browsers for object-oriented systems like Smalltalk-80 [Gold84], the Knowledge

Engineering Environment (KEE) [Inte88], and Eiffel [Meye88a, Meye88b].

The advantages of a browser are that it gives the user free reign over the entire

collection of components, and in object-oriented programming systems allows the user to

see which objects depend on other objects.

There are, however, several disadvantages to the browser approach. The first is

that the method is basically manual, relying on significant user knowledge of the

structure of the component collection. Second, the focus of search is local, meaning that a

semantically similar component defined elsewhere in the system will not be found at all

unless the user knows to look there also. Third (and this is related to the second point),

unless the user has found exactly the component needed, they will not know when to stop

looking. Fourth, unless the component contains some accompanying documentation, the

user is forced to read the source code to determine if the component meets his needs. A final

point relates to the size of the software base. A browser is "...well suited where classes are
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contributed by a small number of people, and the total number of classes does not exceed a

few tens or perhaps a few hundreds. For large-scale reusability, it is no longer sufficient."

[Meye88a, pp. 445-446] In other words, as the number of components in the software base

increases, the value of a browser decreases.

Many of the systems that offer browsers, such as those discussed in Section II.E,

use other techniques such as keyword or multi-attribute search to help mitigate some of

these disadvantages.

2. Informal Specifications

Retrieval techniques based on informal specifications require the user to

describe or list some of the attributes of the component sought. Informal specification

methods include keyword search, multi-attribute search, and natural language

interfaces.

a. Keyword Search

Keyword search mechanisms require the user to specify a list of words

relevant to the object being sought. For example, if a user were searching for a component

that implemented a stack, he would use the keyword stack to perform the search. Keywords

can be drawn from a known system vocabulary (controlled vocabulary), or they can be

unconstrained (uncontrolled vocabulary). In the case of unconstrained keywords,

synonym tables are often used to find more standard words on which to perform the query

[SM831.

One problem with using keywords is that the number and choice of words is

crucial to success. Using a single keyword will often result in high recall but low

precision, whereas too many keywords will have the opposite effect. The search for a

component, thcn, becomes an exercise in trial and error, with the user performing multiple

searches until an appropriate object is found. It often takes an experienced user to achieve

the desired results. Thus, the fundamental disadvantage to using keywords lies in their

limited expressive power both individually and in combinations [MCT87].

The advantages of a keyword approach are easy implementation and its

conceptual simplicity for the user. Most document retrieval systems are keyword based

and many of the software component retrieval mechanisms described in Section II.E have

keyword search mechanisms.
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b. Mulfi-afftibute Search

Multi-attribute search mechanisms [Prie85, BLW90] use keywords, but also

rely on other characteristics of the object being sought to be used as search keys. In the area

of component retrieval, characteristics of components that can be used for retrieval are the

class of the object (procedure, function, package, etc.), the number and types of parameters,

the number of operations it supports, its domain of use, etc.

An advantage to a multi-attribute search is that a component description

contains more than just keyword information. The attributes taken together make up a

classification scheme that provides more information than would be present in a pure

keyword search.

A disadvantage to a multi-attribute search is that the classification and

subsequent storage location of a component defined by its attributes is left to the author

and/or the library administrator, but different people will not necessarily classify the

same component in the same way. If the user succeeds in filling in the same values, the

search mechanism will be very precise, but unless some sort of partial matching function

is used, recall of similar components will suffer.

c. Natural Language Interfaces

Historically, research in information retrieval has focused on textual

document retrieval. It seems fitting to use natural language queries to retrieve natural

language data. The distinct advantage offered by this method lies in the ease of language

query formulations by system users. In addition, the same techniques may be applied to

derive content information from documents destined for storage. [SM831

Language processing may be performed at various levels from phonological

to semantic and pragmatic. In reusable component retrieval, the higher levels of language

processing need to be applied. Of course these are the most difficult. The main challenge

lies in dealing with the ambiguity inherent in the broad semantics of natural language.

Natural language query systems for information retrieval have been built

within constrained domains or by using restricted languages [RG91, Kolo83], but a general

purpose tool remains elusive.

3. Formal Specifications

a. 2ypes of Formal Specifications

Many types of formal specification languages have been used to describe the

semantics of software processes. Factors that contribute to their use as a means for

component retrieval in the context of this research include 1) a syntax or structure that is

consistent with the structure of the underlying implementation language (Ada) [Ada83], 2)
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a means to execute the specification, and 3) a facility for specifying generic components.

Three candidate specification formalisms are discussed here: predicate calculus [RW90c],

plan calculus [RW90a], and algebraic formalisms [GTW78, Wirs88]. The reason usually

cited for using formal specification languages is to achieve precise communication and a

high degree of automation throughout the software lifecycle [BL91]. Using them for

component retrieval is a natural extension to their original usage.

Predicate calculus is a specification language with a rigorous mathematical

foundation. It is an executable specification language as well if you consider logic

programming languages such as Prolog [CM84, Rowe88]. One system that makes use of

predicate calculus as a basis for component retrieval is described in Section II.E.11

[RW90c].

The Plan Calculus is a formalism developed for a system called the

Programmer's Apprentice [RW90a] (see Section II.E.6). It combines the "...representation

properties of flowcharts, dataflow schemas, and abstract data types" [RW88, p. 12] to depict

modules as a hierarchical graph structure. We mention it here not because it is widely

used, but because it is a formal method particularly well suited for comparing program

fragments (a form of reuse) in the Programmer's Apprentice environment (see Section

II. E.6).

The theory of algebraic specifications is based on the notions of classical

algebra in mathematics and on the concepts of abstract data types in computer science

[EM851. It has its origins in the mid 1970's and has been realized in many forms such as

Clear [BG80], LARCH [GHW85], and OBJ3 [GW881. Algebraic specifications consist of a

signature describing the interface to an object and some axioms that describe the object's

semantics. Algebraic specifications may be executable when the axioms are treated as

rewrite rules. Section III.B.3 describes the structure of OBJ3, an algebraic specification

language.

b. Advantages and Disadvantages

The above formalisms have all been employed as a means to retrieve

reusable components. The advantages of using formal specifications are that they are free

from ambiguity and they are subject to stronger forms of transformation than are other

specification methods. In the case of algebraic specifications, the logic and theory of term

rewriting can be exploited. With predicate calculus systems, theorem proving is a natulal

asset.
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There are also disadvantages. Specifications may be difficult for designers

to write. Additionally, processing times for the search algorithms may be excessive

depending on the approach taken. Finally, matching formal specifications is a hard

problem. In fact, the general word problem, which is proving the equivalence of two terms

composed of variables and operators, is undecidable [KB671.

E. SYSTEMS AND TOOLS SUPPORTING CODE REUSE

This section describes systems that have been built to perform reusable component

retrieval and identifies the methods used by each system. While this survey is extensive,

it is certainly not exhaustive. Reusable component retrieval has become a popular

research area and new ideas and projects are surfacing all the time.

1. Draco

The Draco project [Neig84], named after the constellation, is an approach to

software engineering that has had a large impact on software reusability in general. Born

in the early 1980's at the University of California, Irvine, the Draco approach focuses on

domain engineering of software. The goal of the project is to increase the productivity of

software engineers in the construction of similar systems by organizing reusable

components by problem area or domain [Neig84]. Draco was among the first systems to

promote the reuse of products from all phases of the software lifecycle, from analyses and

designs to components.

The most important aspect of Draco is the domain language. A domain

language describes objects and operations of a particular domain and hence represents

analysis information about the domain. The objects and operations are also suitable for

describing design information or how the problem is to be modeled. A given domain

language is characteristic of a particular problem area. Reuse of analysis information

takes place each time a new project is cast in the domain language. Reuse of designs

occurs each time source code is constructed from a design possibility. Even more

reusability is possible when objects and operations of one domain are mapped to those of

another domain.

At the lowest level are the software components, which realize the semantics of a

domain. There is a reusable component associated with each domain language object or

operation. Since there is a potentially large number of components within a domain,

Draco researchers have developed a classification scheme for the components called
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faceted classification to aid in organizing and retrieving the components [Prie85, Prie9ib,

PF871.

Using faceted classification, each component is described by a set of attributes or

tuple. The attributes are chosen to best characterize the components of a particular domain.

Each attribute slot is filled with a value (term) from a controlled vocabulary to avoid

duplicate and ambiguous descriptors. A thesaurus is provided to determine the proper term

to use. A query, then, is a tuple with selected terms used as a key to search the database. In

general, a query session begins with the most specific query, that is, all attributes filled in.

If the results of the query are unsatisfactory, the user may generalize the query by

inserting wildcards (*) for attribute values.

As mentioned in Section II.D.2.b, a disadvantage of a multi-attribute search such

as this one is that semantically similar components may not be found when their attribute

definitions are different. Draco alleviates this problem by maintaining a measure of

conceptual closeness for the term lists of each attribute as a weighted, acyclic, directed

graph. This way, an unsuccessful search can be tried again using an alternative but

similar term in one of the attributes.

In evaluating the effectiveness of faceted classification, the Draco researchers

compared their retrieval mechanism to a database retrieval system not organized by a

classification scheme. Using faceted classification, the number of components retrieved

for a given query was reduced by more than 50%, while the precision of the queries

improved by 100%.

The advantages of faceted classification are that it is conceptually simple for

users and relatively easy to implement. Because of this, the concept has been borrowed to

implement the retrieval mechanisms in both RAPID [VR90] (see Section II.E.2) and OSS

[Rott9l] (see Section II.E.9).

There are also disadvantages to faceted classification. Classification, in

general, is not suitable for unconstrained domains. Also, even with a conceptual closeness

measure, semantically similar components may be missed, especially components from

other domains.

2. RAPID

The RAPID (Reusable Ada Packages for Information System Development)

project is an ongoing effort sponsored by the U.S. Army Information Systems Software

Development Center in Washington (USAISSDCW) [Voge89]. The contractor

implementing the system is Soffech Inc. The objective of RAPID is to provide software
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engineers with quick access to reusable Ada packages in the information systems

domain. The functions it performs are reusable software component classification,

storage, and retrieval.

RAPID uses a faceted classification scheme to organize and retrieve components

(see Section II.E.1) and falls into the category of multi-attribute search [VR90]. The Naval

Weapons Center is currently serving as a beta test site for the RAPID product, but no

measures of performance or quality assessments are available yet.

3. Pixto

Proto is a rapid prototyping system developed by International Software Systems,

Inc. (ISSI) under contract for the Air Force's Rome Lab (formerly Rome Air Development

Center - RADC) [Burn90]. Using Proto, a software engineer may describe the activities of a

system with functional specifications, search for components to model the specifications,

and execute the prototype. The development environment is based on a graphical model in

which an engineer develops functional specifications with data flow diagrams. As a

prototype system is defined, the engineer searches for components to serve as

implementations for each specification. The engineer may then execute the prototype.

Keywords are the basis for the component search mechanism [Burn90]. Since the

system is still under development, the researchers have made no measures of

performance.

4. The Reusable Software Library

The Reusable Software , ibrary (RSL) is a system designed to make software

reuse an integral part of the software development process [BW871. Developed in-house

and for use at Intermetrics, the system couples a passive software database with interactive

software design tools to help software developers find and evaluate components to meet

their requirements.

Components are stored in the database with attribute values that provide a basis

for search. There are two methods available to search for components, standard multi-

attribute search and natural language. The multi-attribute approach provides a menu

driven interface in which the user selects the attributes with which to perform the search.

The designers' report [BW871 does not state whether the vocabulary for the attributes is

controlled or uncontrolled and does not give any performance measures.

Alternatively, the user may express his query in the form of natural language,

such as "I need a stack package." The system parses the input, extracts keywords from it

and uses those words as attributes to perform the search. The designers report that the
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natural language front end is considerably easier to use but the search is significantly

slower, by a factor of five to ten because of the natural language parsing overhead

involved.

Another component of RSL is a subsystem called Score [BW871 which attempts to

rank order the retrieved components based on user specified preferences. In a Score

session, the user must give values for object and subjective metrics such as line count,

complexity, readability, structure, style, documentation and testing. Score presents the

user with graphical "barometers" to rate the relative importance of the metrics. While the

Score subsystem is particularly important for evaluating reusable component alternatives,

the designers gave no performance results in their report.

5. ROPE

The Reusability Oriented Parallel programming Environment (ROPE) is a

software reuse system developed at the University of Texas, Austin, as part of a system

called the Computation-Oriented Display Environment (CODE) [BLW90]. The purpose of

CODE is to aid software engineers in constructing parallel programs using a declarative

and hierarchica -raph model of computation. The purpose of ROPE is to support CODE by

giving engineers the ability to find and understand reusable software components

[BLW90].

Component storage and retrieval is based on a new technique called the

structured relational classification method. This method apparently offers the browsing

capabilities of a hierarchical system as well as the flexibility and ease of reorganization of

a relational model. With the structured relational method, components are described

using attributes in a normal relational database, but associated with each attribute domain

is a graph structure relating the elements of the domain. The graphs may be lattices,

linear sequences, networks, etc. Thus a group of components may be described by a

relation, but the individual characteristics of components within this group are isolated via

the hierarchical structure of the attributes. This assumes the user has some knowledge of

the structure of a particular attribute and how to specify a structured value.

The designers claim, based on studies performed with student programmers, that

the subjects had high rates of reuse, 68% precision for component retrieval, and increases

in both productivity and quality [BLW90].

6. The Programmer's Apprentice

The goal of the Programmer's Apprentice project is to apply artificial

intelligence techniques in an effort to automate the programming process [RW88]. It is
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designed to provide intelligent assistance in all phases of a programming task. The

designers think of the Apprentice as a new agent in the process rather than as a tool.

A reusable component in the Programmer's Apprentice is called a cliche. A

cichd represents a commonly used combination of elements. Examples are abstract data

types, binary searches, and list enumerations. When programming, a software engineer

tends to think in terms of clichds rather than reasoning from first principles. Thus,

programs may be considered as collections of interrelated clichds.

A formalism called the Plan Calculus has been developed to represent chchs

[RW89]. A plan defines a single clichd in three parts: a plan diagram, a logical

annotation, and an overlay. Plan diagrams are hierarchical data flow schemas that

represent computations, control flow, and data flow. Logical annotations are predicate

calculus assertions that describe the nonalgorithmic aspects of a plan. Overlays are

transformations or mappings between plans. Together these parts constitute a language

independent formalism for describing reusable software components.

The Programmer's Apprentice researchers do not emphasize reusable component

retrieval per se, but rather see automated cliche recognition as a means to understand

existing programs and facilitate program optimization [RW90a]. They have devised a

method to recognize clichs in programs using graph parsing in order to recognize a

program's design [RW90b]. A maintenance tool called the Recognizer automatically

finds all occurrences of a given set of clichds in a program and builds a hierarchical

description of the program in terms of the clichds found. Since a plan is essentially a

directed graph, the system uses graph-parsing to identify sub-graphs that are then replaced

with more abstract operations.

At this point it is not clear whether the Recognizer will ever be used as a general

purpose component retrieval tool. It is currently limited to finding algorithmic clichds but

the researchers hope to extend its capability to find data structures and data abstractions as

well. A limiting factor of their method is the inefficiency of the exhaustive, purely

structural approach used in sub-graph parsing. The researchers acknowledge this and

plan to add heuristics based on a program's documentation to focus the search.

7. Common Ada Missile Packages (CAMP)

The Common Ada Missile Packages (CAMP) project is a Department of Defense

sponsored effort to create a software engineering system and reusable software library of

components [CAMP89, Ande88]. The application is software for missiles and the stored
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source code is Ada. One of the main components of the system is the Parts Engineering

System (PES) Catalog.

The designers of the PES catalog liken it to a library card catalog for books

[CAMP89]. The catalog system, used by both software engineers and domain engineers, is

written in Ada and provides a menu driven interface for storing, modifying and

retrieving components (parts). Each part has an attribute list associated with it, thus

attributes are the basis for retrieval.

Searches for parts are based on a single attribute whose value must be selected

from a finite list of values. The result is a "search-list". A search-list is obtained by

searching either the entire database or another search-list. Multi-attribute search is based

on and and or combinations of attributes. It may be simulated by combining the results of

single attribute searches, that is combining search-lists. Examples of attributes are

keyword, part ID, part number, part name, classification, developer name, developer

project, etc.

Since there are a finite number of possible values for each attribute, "canned"

searches are also provided by the system to increase performance. What this means is that

the system has already created an index into the database for all components with, for

example, keyword "navigation" or type "bundle". Whenever a component is added to the

database, these indexes must be updated. These canned searches are only useful when the

search is performed on all components in the data base, not on a subset of the components.

The CAMP documentation did not assess the performance of the PES catalog. No

mearsures were given for precision and recall, but from the search method used, it is easy to

see that measures of precision and recall are not meaningful from just search results.

This is because a component's supposed relevance is predetermined by the value given to

one of its attributes. Hence, a search for all components whose keyword attribute is filled

with the value "navigation" will return all components in the current search-list with that

value. This might lead one to believe that precision and recall values are one for this

method. Unfortunately, the question of relevance is not simply a matter of having the right

value for an attribute. Relevance depends on how well the requirements of a particular

design can be met by the candidate component. Simply having the requested attribute

value does not guarantee relevance. Therefore, we must question the accuracy with which

attribute values are assigned to components. Since the possible values for each attribute is

finite, the same limitation that besets keyword search mechanisms is present here, that is,

the choice of descriptors may be close, but not quite right. A more appropriate method for
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determining relevance is a subjective look at the retrieval based on how well attribute

values describe the actual component and the extent to which other components with

different attribute values are relevant.

8. Object-Oriented Systems

Object-oriented design is a software decomposition technique that has become

popular since it is a natural way of mapping a problem to a solution [Booc86]. Object-

oriented systems support object-oriented design by allowing the programmer to define a

hierarchy of interrelated objects. A key feature of object-oriented systems is inheritance.

This feature makes object-oriented systems particularly "reusable" because new

applications are readily defined on the basis of previously defined applications and an

object's properties may be shared by many different kinds of sub-objects. In systems such

as Smalltalk [Gold84), Eiffel [Meye88a, Meye88b), and KEE [Inte88], a library of

components is at your fingertips, ready to be exploited. Unfortunately, in the author's

opinion, finding the right component to use in an object-oriented system is not easier just

because the system is object-oriented, at least for programming in the large.

The discussion on browsers in Section II.D.1 sums up the problem with finding

components in these object-oriented systems; the search technique is manual and

familiarity with the structure of the object base is required. If a designer finds an object

with half of the methods he needs, how does he know whether or not to stop searching?

Of course, object-oriented systems are not limited to browsers. Other methods can

be integrated with a browser to provide multiple search mechanisms. Unfortunately,

because research on retrieving components in object-oriented systems is still in the early

stages, we have found no experimental results in the literature. Good discussions of

reusability in object-oriented systems can be found in Biggerstaff and Perlis' book on

software reusability [BP89b).

9. Operaton Support System
The Operation Support System (OSS) is an in-house effort undertaken by the

Naval Ocean Systems Center to develop an integrated software engineering environment

[Rott91]. One goal of the project is to establish a Navy software library of reusable software

components [Rott9l]. The current prototype library subsystem allows component retrieval

using faceted classification (see Section II.E.1 on Draco), keywords, or a textual browser.

Once a component of interest is found, the user may display the structure of the component

with an integrated, vendor supplied tool called Software Through Pictures [Inte90]. The

components currently stored in the library are large command, control, and
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communications (C3 ) software subsystems. Since the library is still in its early stages, the

developers do not have information on its performance characteristics.

While the OSS library subsystem is not yet integrated with the software

development environment, their goal is to eventually integrate it to foster reuse throughout

the lifecycle. To increase the extent of code reuse, the developers have also proposed efforts

to perform domain analysis of the C3 discipline to determine what components are

common to the systems. Thus, it is their aim to design components with reusability as a

goal rather than an afterthought [Rott91].

10. ARCS/Eli

The Automated Reusable Software Toolset (ARCS), also known as Eli (for Eli

Whitney) is a reuse library system and set of cooperating tools under development by

Software Productivity Solutions [SPS91]. The purpose of the system is to support software

development centered on reusable software assets.

The ARCS developers believe that effective information retrieval requires

classification flexibility. According to its product description, ARCS uses a combination

of techniques for software, asset classification and retrieval including faceted

classification, keyword indexing, text indexing, characteristics-based attributes, metrics

criteria, taxonomies, component relationships, and a browser. Using this broad range of

classification schemes, it would seem that the overhead for the variety of search

mechanisms and cross referencing would be somewhat taxing.

Detailed information on this system is not available, since it is proprietary. A

beta release of the system is planned for late 1991. Hence, there are no measures of

performance available.

11. Specifications as Search Keys

An experimental system developed at Carnegie Mellon University uses formal

specifications to search software libraries [RW90c]. Their system allows a user to search a

library containing functions for a particular function. Each function in the library has a

corresponding formal specification. Specification matching is the process of determining

whether a specification s for a library function satisfies a query q. Specifications and

queries are written in XProlog. Each specification has a signature and some semantic

information. Their aim is to match first on signature and then increase precision by

matching on specification semantics.
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Signature matching checks that the types in the signature of the query match those

of the stored functions. The matching algorithm allows matching on signatures with

minor structural differences such as flipped operators or "curried" [MacL90] arguments.

As each candidate is found by signature matching, the system performs semantic

matching. Specification semantics are defined using pre-conditions and post-conditions.

For each function there is a predicate that defines the function's pre-condition and another

predicate that defines its corresponding post-condition. In the process of matching, a query

pre-condition is satisfied if the query pre-condition implies the pre-condition of the

function. Likewise, a query post-condition is satisfied if the function post-condition

implies the query post-condition. Since standard Prolog unification and backtracking is

used as the search method, a list of candidates may be obtained by forcing the system to

backtrack and search for other alternatives.

The system designers claim, as we do in this dissertation, that the use of

semantics in specification matching increases precision. They show in their report using

examples that precision is improved but they do not give any general statistics that indicate

how much. The designers feel that using XProlog offers the distinct advantage of higher-

order logic for matching but admit that the lack of equational reasoning limits the

capabilities of the system.

F. SUMMARY

This chapter introduced the concept of reusable software components, reviewed the

fundamentals of information retrieval and the methods available for retrieving

components, and identified a number of systems that use these methods to retrieve reusable

software components. An overriding characteristic of all of the systems is the lack of any

measures of success. Reports on some of the systems mention the need for improvements

in precision and recall, but none give actual results from practice. The most likely reason

for this is that there is no link between the existing software libraries and these new

systems. Because each system requires a unique form for the representation of the

components to be stored, each system will have to "grow" its own library of reusable

components. That process will take some time. If the library can be placed into service as

it expands, then performance measures can be made to determine the actual success of the

retrieval mechanisms and of the concept of reusability in general.

The system described in this dissertation must bear the same burden. A formal

explanation will verify the process and show how the algorithms work (see Chapter IV).
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Examples will be provided to offer evidence that the implementation realizes the algorithm

(see Chapter V). Unfortunately, actual results obtained by using the system in practice are

not yet available.

An additional issue that the designers of most of the systems described fail to address

is component granularity. Some of the methods described are completely independent of

the size of the stored component, while for others granularity is an important factor. When

using a browser or informal specifications, the size of the stored component is transparent

to the user and is not an important factor in the search. Use of formal specifications,

however, requires the user to write some sort of specification that models the component

sought. In this case, more effort is required to write the query and more processing may be

required to perform the search. Each individual system assumes some sort of component

granularity. Systems with browsers or search mechanisms which rely on informal

specifications can afford to be more flexible with regard to the size and content of the

components stored. Systems using formal specifications as the basis for retrieval are not

limited in any fundamental way to small components, but for practical reasons, tend to

focus on small, atomic, cohesive program units.

The system described in this dissertation relies on the prototype designers to

decompose the system they intend to build into modular, functionally (or informationally)

cohesive program units (according to the tenets of software engineering [Fair85]) and

perform the search for reusable components at that level. The system and methods do not

preclude the designer from searching for a more complex object. Various users of CAPS

will have alternative views about the type of objects and granularities of objects that will be

stored in the software base.
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HI. A MODEL FOR REUSABLE COMPONENT RETRIEVAL

A. INTRODUCTION

The reusable component retrieval tool which is the subject of this dissertation is a part

of a much larger system under development at the Naval Postgraduate School which is

designed for computer aided rapid prototyping. This chapter begins by describing the

Computer Aided Prototyping System (CAPS) [LK88, Luqi91] and its specification language

PSDL (Prototype System Description Language) [LB88, LBY88]. We then narrow the focus

and abstractly describe the component retrieval subsystem, how it fits within CAPS, and

some of the characteristics of formal specifications in their role as search keys. This will

give a broad overview of the system and enough information about the retrieval subsystem

to understand the explanation of the initial assumptions and models in Section III.C.

We include a section describing the initial assumptions and models because the path

taken from the initial understanding of the problem to the eventual solution was not direct.

There are valuable lessons to be learned by knowing what approaches were evaluated and

why certain paths were not taken. The section on initial assumptions and models

describes two hypothetical approaches to reusable component retrieval: the concept of

normalization as if it were the predominant factor in retrieval and the concept of theorem

proving as if it were the predominant factor in retrieval. The section concludes by

elaborating modified assumptions.

The last section reiterates the contents of Section III.B.4, the description of the

component retrieval subsystem, this time providing more details about the role of

normalization and the form of matching.

B. SYSTEM OVERVIEW

1. The Computer Aided Prototyping System

The computer aided prototyping system (CAPS) is an integrated environment

aimed at rapidly prototyping hard real-time embedded systems [LK88, Luqi9l]. The

integrated set of software tools provided includes an execution support system, a syntax

directed editor with graphics capabilities, a software base with an embedded rewrite

system, and an engineering database management system with an embedded design

management system. Figure 3.1 shows the high level structure of CAPS.
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Figure 3.1. Structure of CAPS

Embodied within the CAPS software development approach is a systematic design

method for rapid prototype construction. System or subsystem descriptions are started at a

problem-oriented, abstract level and iteratively refined into a hierarchically structured

prototype using a uniform decomposition method that combines the advantages of data flow

and control flow methodologies. At each level of the hierarchy, the designer focuses only on

the details important at that level. To generate a prototype, the designer of the prototype uses

the graphic editor to create a graphic representation of the proposed system. The graphic

representation is used to generate part of an executable description of the proposed system,

represented in a Prototype System Description Language (PSDL) [LB88, LBY88]. PSDL

descriptions are used to search the software base to find reusable components that match the

specifications. A transformation schema is then used to transform the PSDL specification

into Ada [Ada83] code that controls and connects the retrieved reusable components. The

prototype is then compiled and executed. The end user of the proposed system evaluates the

prototype's behavior against the expected behavior. Successive iterations of this process

should lead to a system that ultimately satisfies the user's requirements. [Cumm901
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CAPS is divided into three major subsystems. They are the user interface, the

execution support system, and the software database. The following sections describe each

in turn.

a. User Interface

The CAPS interface provides a cohesive software development environment

integrating the tools of CAPS (see Figure 3.2). At the core of the environment is the host

operating system. The windowing system, X-windows [Jone89], is the next layer.

InterViews [LVC89], the toolkit chosen to develop the user interface, provides the interface

between the upper layers of the environment and X-windows. The CAPS tools sit on top of

InterViews and are surrounded by the tool interface. The tool interface provides all

communication between the tools and the user interface. The outermost layer of the

environment is the user interface. This layer hides the underlying implementation

details from the designer. [Cumm90]
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Figure 3.2 - CAPS TIools and Interfaces
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b. Execution Support System

The execution support system gives the designer the ability to execute the

prototype. This support system consists of four major components: a translator, a static

scheduler, a dynamic scheduler and a debugger. The translator generates code, binding

together the reusable components retrieved from the software base. Its primary functions

are to implement data streams and control constraints. The static scheduler allocates time

slots for operators with real-time constraints before execution begins. If the allocation

succeeds, all operators are guaranteed to meet their deadlines even with worst case

execution times. The dynamic scheduler invokes operators without real-time constraints

in the time slots not used by the operators with real-time constraints. The debugger offers

designer support for locating logical errors during prototype execution. [Pala90]

c. Software Da&tbase

The software database has two primary subsystems, the engineering database

management system and the repository of reusable components, called the software base.

An engineering database management system should provide the following facilities to

support computer-aided software development environments [DL91]:

* Persistence
* Concurrency control
* Version control
• Reuse of past design objects
• Configuration control
* A wide variety of data storage
* Guarantees that data will not be corrupted due to security violations or media

failure

Persistence means that objects in the database will exist after the process that

created them has terminated. Concurrency control allows many design engineers

concurrent access to design information. To keep data on several design alternatives,

version control is required. Reuse of past design objects improves productivity and helps

design engineers exploit past successes. Configuration control is needed to record the

history of evolving systems and in guiding and controlling their evolution. A varied data

store provides features for storing variable length text and graphical objects. Finally,

security of data is important to safeguard valuable design information. [Dwye9l]

The engineering database management system of CAPS supports all of the

above facilities using an object-oriented approach (Ontos) [Nest86I supporting a graph

model of software evolution (Luqi90].
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The second subsystem, the software base, is a repository for reusable software

components. The software base management system provides graphical tools to store

components in the software base and search for components using a browser, keyword

search, or query using a formal specification [McDo91]. While the mechanisms

implemented to perform component retrieval are language independent, the software base

in our implementation will be populated with reusable Ada components. More details about

the structure of the software base and component retrieval mechanisms may be found in

Sections B.4 and D of this chapter.

2. 1he Prototype System Description Language

The prototype system description language (PSDL) [LB88, LBY88] forms the basis

of CAPS. It serves as an executable prototyping language at a specification or design level

and has special features for real-time system design. The PSDL model is based on data

flow under real-time constraints and uses an enhanced data flow diagram that includes

non-procedural control constraints and timing constraints.

PSDL provides two kinds of building blocks for prototypes: abstract data types and

operators. Software systems are modeled as networks of operators communicating via data

streams. Figure 3.3 shows an example of a PSDL specification for an abstract data type

component that implements a set and some of its operations.

The set package defines the operators Empty, Add, In, Subset, and Equal for a set

of integers. Each operator description includes a specification that may optionally include

inputs, outputs, exceptions, generic parameters, states and timing information. These

interface characteristics are defined by the software engineer during the design process.

An integral part of the design process in this rapid prototyping paradigm is to search for an

existing component before writing any code to satisfy a requirement. The software base

component retrieval tool exploits the interface characteristics of the specification entered

by the designer to quickly partition the database and isolate components that are potential

candidates. The details of this process, known as syntactic normalization and matching,

are discussed in Chapter IV.
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type SET operator EQUAL
specification specification

operator EMPrY SI: set
specification S2: set

Si: set RESULT : boolean
end end

keywords SET, INTEGER
operator ADD

specification description (Implements a set of
input integers)

ELEMENT : integer
S: set axioms {

ottpt ***(operations empty add in
S2: set subset equal)

end obj SET is sort Set.
protecting Int.
op empty : -> Set.

operator IN op add: Int Set -> Set.
specification op in : Int Set -> Bool.

input op subset: Set Set -> Bool.
ELEMENT : integer op equal : Set Set -> Bool.
S: set vars sl s2 : Set.

ou4xt vars el e2 : Int.
RESULT : boolean cq add(el, sl) = sl if in(el, sl).

end eq in(el, empty) = false.
eq in(el, add(e2, sl)) =

or(==(el, e2), in(el, sl)).
operator SUBSET eq subset(empty, sl) = true.

specification eq subset(sl, empty) = false.
Input eq subset (add(el, sl), s2) = and

S: set (in(el, s2), subset(s1, s2)).
S2: set eq equal(s1, s2) =

Ozutt and(subset(s1, s2),
RESULT : boolean subset(s2, s 1)).

end endo }
end

Figure 3.3 -A PSDL Specification for a Set

One of the latter parts of a PSDL component specification is the formal description

of the component, that is, the axioms. In its current version, PSDL does not require any

specific syntax for formal axioms. This part of the language definition has been left

unspecified intentionally to provide flexibility, allowing alternative forms of

specification. The author has chosen to augment PSDL with an algebraic specification
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language known as OBJ3 [GW88, Wink91]. The OBJ3 axioms express the semantics of the

specification and are the basis of semantic normalization and matching, another phase of

the retrieval process. Figure 3.3 includes an OBJ3 specification in the axioms portion of the

PSDL.

The OBJ3 portion of the specification is contained within the curly brackets that

delimit the axioms portion of the PSDL specification. The line containing ***(operations

empty add in subset equal) is an OBJ3 comment which is used here to indicate which of the

operators the object will export. This information is used by the semantic normalization

and matching algorithms described later.

3. (IJ3

OBJ3 is a functional programming language rigorously based on order sorted

logic [GW88, Wink91]. It may be used to describe the syntactic and semantic properties of

sequential processes but does not the have facilities for specifying the dynamics of

concurrent processes1 . The dominant construct in OBJ3 is the module. Modules can be

objects or theories. An object completely determines the behavior of a type or parameterized

set of types and a theory partially constrains the behavior of a set of types. Objects are fully

executable and theories are partially executable because the theory may not contain enough

constraints to fully determine the values of some of the operations. Because our retrieval

mechanism requires the specifications to be fully executable, as we will show later, we

focus on objects. The axioms part of the PSDL specification in Figure 3.3 defines an OBJ3

object, in this case an abstract data type for a set. OBJ3 objects consist of a signature and a

set of axioms , the focus of the next two sections.

a. Signature

An OBJ3 definition of an object introduces a new set of values that contains

all the instances of the type or sort2 being defined. The principal sort of the abstract data

type is the name of this set of values. The principal sort of the OBJ3 specification in Figure

3.3 is Set. The signature defines the syntax of the object's interface. It consists of a list of op

definitions that have the following form [GW881:

op (OpForm) : (Sort)... -> (Sort) [(Attributes)].

1This is not a drawback, since the focus of this research is on process input/output
characteristics as opposed to real-time processing characteristics.

2Order sorted logic uses the term "sort rather than "type".
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A single op definition defines the name (OpForm), domain sorts, range sort

and attributes of an operator 3. OBJ3 offers tremendous flexibility in the OpForm, allowing

mixfix syntax. Mixfix syntax allows the designer to specify the syntactic format of the

operators and the operands within expressions. For simplicity, we restrict the OpForm to

prefix syntax. We require the OpForm to be a simple identifier adhering to the following

regular expression4 : [a-z][a-zO-9]*. The axioms corresponding to the OpForm must be in

prefix format also. For example, given the following op definition:

op subset : Set Set -> Bool.

the axioms used to define subset could look like:

eq subset(empty, sl) = true.
eq subset(sl, empty) = false.
eq subset (add(el, sl), s2) = and(in(el, s2), subset(sl, s2)).

All sorts used in the op definition must be previously defined by the user or

predefined in the language as one would expect with any typed language. The predefined

sorts offered by OBJ3 include Bool (Boolean), Nat (Natural), NzNat (Positive), Int

(Integer), Float, Rat (Rational), Qid, Qidl, and Id (Identifiers). The sorts in the object

defined in Figure 3.3 are (Set, Int, Bool). An operator whose range is the same as the

principal sort is called a constructor. An operator whose range is a sort other than the

principal sort is called an accessor.

Attributes may be added optionally to an op definition. Attributes add

additional properties to operators such as associativity, commutativity, etc. that affect

parsing, order of evaluation, and efficiency. We shall see later that attributes play an

important role in semantic matching. The following example shows the use of

associativity and commutativity attributes declared for a sum op definition:

op sum : Nat Nat -> Nat [assoc comm].

b. Axioms

Axioms define the semantics of an object and are implemented as equations.

The basic syntax for an equation in OBJ3 is

eq (Expl) = (Exp2).

where (Expl) and (Exp2) are well-formed expressions of operations and variables present

in the current context. The form of expressions in OBJ3 offers "...abstract denotational

3Since OBJ3 is a functional programming language, all operators are functions.
4An identifier begins with a lower case letter, followed by zero or more lower case

letters and digits.
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semantics based on order sorted algebra, and a more concrete operational semantics based

on order sorted rewriting." [GW88, p. 71 The language is thus executable by treating the

equations as rewrite rules, substituting matched instances of left-hand sides with

corresponding right-hand sides.

There are also conditional equations of the form:

cq (Expl) = (Exp2) if (Bexp).

where the condition is a boolean expression. This type of rule fires only when the left-hand

side is matched and the boolean expression on the right hand side evaluates to true.

Two final forms provided are:

bq (Exp) = (Lisp).

and

cbq (Exp) = (Lisp) if (Bexp).

which allow the user to perform Lisp operations in lieu of term replacement.

c. Parameterized Modules

Figure 3.4 shows an example of an OBJ3 specification for an environment,

an abstract data type that keeps track of values bound to variables. This object is

parameterized. There is an interface to the object in the form of ENVIRONMENT[Item

Key :: TRV]. The sorts Item and Key are called parameterized sorts, meaning that this a

generic object that must be instantiated with theories that correspond to the generic

parameters. A theory, which has a structure similar to that of an object, describes the

structure and properties of the parameter. "Semantically, a theory defines a 'variety' of

models, containing all the (order sorted) algebras that satisfy it, whereas an object defines

just one model (up to isomorphism), its initial algebra." [GW88, p. 221 In the case of Figure

3.4, the theory used for both parameters is TRIV. TRIV is a predefined theory in OBJ3 of the

form:

th TRIV
sort Elt.

endth
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obj ENVIRONMENT[Item Key:: TRIV] is
sort Env.
protecting BOOL.
op null : -> Env.
op default: -> Elt.Item.
op bind: Elt.Item Elt.Key Env -> Env.
op lookup: Elt.Key Env -> Elt.Item.
op combine: Env Env -> Env.
var El E2: Elt.Item.
var K1 K2 : Elt.Key.
var Envi Env2: Env.
eq lookup(Kl,null) = default.
eq lookup(Kl,bind(El, K1, Envi)) - El.
cq lookup(Kl,bind(El, K2, Envl)) =

lookup(Kl,Envl) if K1 =/= K2.
eq combine(null, Envi) = Envl.
eq combine(Envl, null) = Envl.
cq combine(bind(E1,K1,Envl),Env2) =

combine(Envl,bind(E 1,Kl,Env2))
if lookup(Kl,Env2) == default.

cq combine(bind(E1,K1,Envl),Env2) =

combine(Envl,Env2)
if lookup(Kl,Env2) =/= default.

endo

Figure 3A -OBJ3 Specification fbr an Environment

There is obviously very little in the way of structure or properties in the TRIV

theory. To add structure and properties a view is required. A view specifies the way in

which a certain module satisfies a certain theory. Thus we can create a new module

(ENVT1) by instantiating the parameterized module with an actual parameter using a

particular view. For example, the following statements could be used to instantiate the

object in Figure 3.4 with objects NAT and FLOAT:

view ITEM1 from TRIV to FLOAT is endv
view KEY1 from TRIV to NAT is endv
make ENVT1 is ENVIRONMENT[ITEM1, KEY1] endm

Alternatively one could write:

make ENVT1 is ENVIRONMENT[FLOAT, NAT] endm

and have the views defined automatically. The new object, ENVT1, now defines an

abstract data type that binds items of sort Float to keys of sort Nat. (By convention OBJ3
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uses all capital letters for module names and a capitalized identifier for the sort defined by

the module.)

d. ImportingModules

Objects may import operations and sorts from other objects using the

protecting , extending, or using statement. The difference between these three forms of

importation is related to the initial algebra semantics of objects [GW881. When importing

objects in the context of initial algebras, we must be aware of two properties related to the

importation: "no junk" and "no confusion."[GW88, p. 181 The "no junk" property states

that if a module M' is imported into a module M, then M' will not add any new data items of

sorts already defined in M. "No confusion" states that if M' is imported into M, then M'

will not define any old items already defined by M. With respect to these properties, the

given importation mechanisms have the following characteristics:

Import Mechanism Properties

protecting no junk, no confusion
extending no confusion
using no guarantees at all

OBJ3 does not check whether these properties hold. The user must ensure that

the chosen import method is appropriate for the object defined. In the object defined in

Figure 3.4, we import anotlher object BOOL using the protecting statement, which affords us

the ability to use the operations and, or and not (among others) in Boolean expressions.

e. Why OBJ3?

Given the plethora of formal specification languages available today, we feel

it is important to justify our selection of OBJ3. Since our particular implementation of the

software base contains Ada [Ada83] reusable software components, we are concerned with

how well-suited the chosen specification language is for describing Ada program units.

One of the reasons we chose OBJ3 was because it corresponds well with Ada. It is easy to see

parallels between OBJ3 objects and Ada packages. An OBJ3 signature is analogous to an

Ada package specification and the axioms to a package body. Also, parameterized

modules model the semantics of Ada generic software components that will be in the

software base. The OBJ3 importation statements model the Ada with. Hence, OBJ3

specifications will have structures similar to the Ada modules they represent.

Given this close correspondence between OBJ3 and Ada, designers will be

able to formulate their formal specifications more readily. Personnel familiar with Ada

syntax and semantics will be able to easily identify the parallels between the two
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languages, better understand the formal specifications, and more easily write

specifications. OBJ3 provides a degree of consistency one would not find with other

specification languages.

A further justification for the use of OBJ3 is its execution system. OBJ3

specifications have operational semantics when the axioms are treated as rewrite rules. In

addition, the term rewriting system can be used as a theorem prover. These features are

particularly important to our method of component retrieval and are therefore mandatory

requirements for the chosen specification language.

f. Why not Predicate Logic?

Predicate logic is a solid candidate for use as a specification language. It has

executable implementations (e.g., Prolog, Eql, etc.) and has been promoted as a formal

specification language [Luqi87] , as a reusable component retrieval mechanism [RW90c],

and as a basis for transformation from specification to executable code. What it lacks,

however, is a close correspondence to Ada. We are already asking the designer to learn a

formal specification language in order to express the semantics of modules. In the interest

of regularity and syntactic consistency [MacL87], it is prudent to have the specification

language be as close as possible to the implementation language without sacrificing

necessary characteristics of the specification language. While predicate logic has

executable implementations and theorem proving power, its syntax is an unnecessary

inconvenience.

4. Component Retrieval Subsystem

Having described CAPS, PSDL, and OBJ3, we now focus on the component

retrieval subsystem. This section provides a broad overview of the retrieval system and

the general approach that lies beneath it. Finer details of the retrieval mechanisms may be

found 5n Section D of this chapter.

a. Formal Specifications for Component Retrieval

The paradigm for rapid prototype construction in CAPS leads the designer

from a graphical representation of the prototype, through specification with a prototyping

language, and then on to code generation. Figure 3.5 shows the prototyping process

supported by CATS.
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Figure 3.5 -The CAPS Prototyping Process

Note that CAPS is not designed to be a code synthesis system, which translates

formal specifications into executable code (such as REFINE [Reas86]) . Instead, CAPS

takes advantage of a library of reusable software components.

Since the prototype designer writes specifications for the operators and data

streams to model system requirements, we use these specifications to locate components

that will satisfy those requirements. A retrieval system that is automatic, efficient, and

effective relieves the designer from having to use a browser or some other manual means

to locate components. This is particularly beneficial when the software base contains

thousands of components.

b. The Role of Normalization

The designer's specification for an operator serves as a key in the search for

an appropriate component. Like most information retrieval mechanisms, we must modify

the key in some way to improve the efficiency of the search. An analogy to this is hashing,

a widely used technique for implementing table lookup algorithms [AHU83] where a given
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key is manipulated mathematically to find an object's actual address within a data

structure. The process of transforming or manipulating the specification for a reusable

software component is called normalization.

The PSDL specification, augmented with OBJ3, describes both the interface
(syntax) and the behavior (semantics) of an object. Hence, we perform two types of

normalization: syntactic and semantic. Syntactic normalization standardizes the form

of the query's interface characteristics to be used in syntactic matching. Semantic

normalization transforms the signature and axioms of the OBJ3 portion of the

specification to make them suitable for semantic matching. In both cases normalization is

necessary based on the algorithm used for matching.

c. System Structure

The CAPS software base basically supports two activities: component storage

and component retrieval. Figures 3.6 and 3.7 abstractly illustrate the storage and

retrieval processes.

Normalized

FomIpc Normalizatioln - rNormallzauon sotwr

Figure 3.6 - Normalization for Component Storage

Components to be stored must first pass through syntactic and semantic
normalization. The normalization processes transform the component's specification to

facilitate later matching. The normalized specification is stored with the component in the

software base.

Syntactic Syntactic Components Sfwr
Normalization Matching Bs

Formal Spec

SematicSemnic IComponents
Norrmlizetion 111atchlng I EJ ElF ""

Figure 3.7 -Normalization for Component Retrieval
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Figure 3.7 shows the abstract process for component retrieval. A query for a

library component is a PSDL/OBJ3 specification. The query is syntactically and

semantically normalized and then matched against stored specifications. Syntactic and

semantic normalization may proceed in parallel but syntactic matching must take place

before semantic matching. Syntactic matching is faster and partitions the software base

quickly in order to narrow the list of possible candidates that the semantic matching

algorithm must consider. Semantic matching may be time consuming and should be

applied to as small a candidate list as possible without excluding potential matches.

Semantic matching should provide an ordered list of candidate components.

Both syntactic and semantic normalization and matching are required to

achieve the best performance from the system. The main benefits of syntactic matching

are speed and recall, whereas the advantage of semantic matching is precision. We

believe that this precision is required in order to reduce and rank order the reusable

components that a designer will have to evaluate before making a selection.

This section provided a brief look at the component retrieval subsystem of CAPS.

It serves as an introduction in order to better understand the following section on our

initial assumptions and models. More detail on the retrieval mechanisms may be found

in Section D of this chapter.

C. INITIAL ASSUMPTIONS AND MODELS

Semantic normalization and matching is the focus of this dissertation. We review the

syntactic methods to some extent in Section III.D. The ensuing description of our initial

assumptions and models relates to semantic normalization and matching techniques

only.

1. Initial Assumptions

The search for a component is an information retrieval problem. It can be

divided into two parts: representation and search. A representation is the model of the

object sought and the search exploits the representation to find a desired object. A

sophisticated representation technique should simplify the search problem. Conversely, a

simple representation implies an involved search mechanism.

A tradeoff exists between representation and search. Increased sophistication in

one area leads to simplification in the other. Looking at the two extremes, it would be

profitable to find either a representation technique (normalization) that makes search

trivial or a search technique that obviates normalization. For both of these extremes, we
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can exploit an algebraic formalism (OBJ3) for specifying components. The preferred

method proposed in this dissertation lies between the two extremes and has non-trivial

components for both normalization and matching. Sections 2 and 3 explain the idealized

extreme approaches and Section 4 describes the middle ground, that is, our modified

assumptions.

2. Semantic Normalization

An ideal semantic normalization method would transform the axioms of two

semantically equivalent objects into syntactically equivalent forms. Consider an ideal

normalization algorithm. Figure 3.8 illustrates that, given two semantically equivalent

specifications, A and B, the result of passing them through the ideal normalization

procedure should yield the same specification, C. Ideally, any specification semantically

equivalent to A or B should be transformed to C when passed through the procedure.

To implement the ideal normalization procedure we considered applying a set of

rewrite rules to specifications to transform them. Since the axioms used to describe the

semantics of a module are a formal language with a well-defined, regular structure, it is

possible to automatically rewrite a set of axioms to an alternative form with the same

meaning, that is, use semantics preserving transformations. A set of general purpose

rewrite rules could be used to rewrite semantically similar axiom sets or normalize them

to a common form. Thus, with respect to information retrieval, our representation

technique becomes semantic normalization and our search is a simple matter of

comparing axioms for syntactic equality. The following section shows an example of this

approach.

A B

IdealIdeal
Nonnalize Normalize

C =C

Figure 3.8 - Ideal Normalization of Axioms
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a. Example

Consider the following example [Luqi87]. Given two specification fragments,

we want to use rewrite rules to normalize them, reducing them to a syntactically

equivalent form. We start with the following fragments:

1 <= i < j <= length(REPLY) -+ REPLY(i) <= REPLYj] [1]

REPLY = a @ [xl @ b @ [y] @ c -+ x <= y [2]

Equation 1 uses indices and Equation 2 uses concatenation of subsequences (@) to specify

that the elements of REPLY, the output of some software module, must be sorted in

increasing order. The solid arrow used in the fragments (-4 ) denotes an implication.

Table 3.1 shows a set of rewrite rules that could be applied to Expression 1 to make it

syntactically similar to Expression 2.

TABLE 3.1 - CONDITIONAL REWRITE RULES

# Rule Comment
Relationship between the indices and data value

RI s = a @ [x] @ b -4 s[length(a) + 1] -> x at a given position in a sequence
Standard ordering on integersR2 x <y+ x->O~ 0<__________,___

R3 x <= y+x-> < Standard ordering on integers

Theorem about lengths of sequences
R4 0 <= lengh(s) --> true _____lawoBooleanalgebr

R5 true - Absorbtion law of Boolean algebra
R6 p trueAbsorbtion law of Boolean algebra

R7 x <= y < z -- > x <= y & y < Z Definition of repeated inequalities

R8 x < y <= z -- > x < y & y <= z Definition of repeated inequalities

Derived from Expression 1.2 in the hypothesis
R9 REPLY --> c @ [y] @ d of the implication

RIO lengh(s @ t) -- > length(s) + length(t) Basic fact about the length of a sequence

R1 1 length([x]) --> 1 Basic fact about the length of a sequence

A standard inequality lawR12 x +y,<= z+y--> x<=z ______________

R13 length(s) < length(u) & s 0 t = u Common prefix law for sequences

u -> s @ w

The broken arrow used in the rules denotes term rewriting, that is, if the

expression on left-hand side can be matched and the conditions are met, then it can be
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replaced with the expression on the right-hand side using a consistent binding for the

variables.

We first apply R1 to Expression 1 under the substitution (s: REPLY, i:

length(a) + 1) resulting in Expression 1.1.

REPLY = a @ [x] @ b & 1 <= length(a) + 1 < j <= length(REPLY) [1.11

- x <= REPLY[j]

Applying R1 again with the substitution (s: REPLY, j: length(c) + 1) yields Expression 1.2.

REPLY = a @ [x] @ b [1.21
& REPLY = c @ [y] @ d
& 1 <= length(a) + 1 < length(c) + 1 <= length(REPLY)
-_ X <= y

Next, we can reduce to true the condition

1 <= length(a) + 1
using rules R2 and R4, and eliminate the truth value using R5 and R7. This yields:

REPLY = a @ [xl @ b [1.3]
& REPLY = c@ [y]@ d
& length(a) + 1 < length(c) + 1
& length(c) + 1 <= length(REPLY)
-- x <= y

R12 is used to simplify

length(a) + 1 < length(c) + 1

to:

length(a) < length(c)

and the condition

length(c) + 1 <= length(REPLY)

can be reduced to true by applying R9, R10 (twice), R11, R12, R3 and R4. The truth value is

eliminated using R6. The result is Expression 1.4.

REPLY = a @ [xl @ b [1.41
& REPLY = c@ [y] @ d
& length(a) < length(c)
- x < -y

Further progress can be made using R13. Under the substitution (s: a @ [x], t: b, u: c, v: [y]

@ d), the result is Expression 1.5.

REPLY = a @ [x] @ w @ [y] @ d -4 x <= y [1.51

Expression 1.5 is the same as Expression 2, up to renaming of variables. If we rename the

variables in a consistent manner, the two expressions are syntactically identical.
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The above example is a powerful one that demonstrates that a set of rewrite

rules, most of them standard laws, can be used to transform semantically equivalent

expressions into syntactically equivalent forms. The question of whether this can be done

automatically, however, raises some interesting issues.

b. Issues

If we refer to the rewriting example shown above as normalization, then we

should contrast the process with our concept of ideal normalization. In the example above

we started with two expressions and our goal was to rewrite one to look like the other. The

application of rules was focussed on making Expression I identical to Expression 2.

Hence, we could say that the process was goal-driven. This is analogous to manual

theorem-proving, where we know what it is we want to prove and we select axioms that take

us closer to our goal. Under ideal normalization used for component storage, however,

there is no defined goal. Referring back to Figure 3.6, a component specification is

normalized before it is stored. This normalization takes place in the absence of any

corresponding specification with which to compare the specification being normalized. In

essence, the normalization process has no defined goal toward which to work.

One approach to this problem is to simply apply rewrite rules until no more

can be applied, that is, until the expression or expressions have reached normal form

[Gogu88I. In order for the system to be automatic, the system of rewrite rules would have to

be Church-Rosser and terminating (confluent and noetherian) [H080]. The Church-

Rosser property is a completeness property that states, given terms M, N, and P, that if

P-+*N and P- *M,

then there must be a Q such that

M - * Q and N -+ * Q,

where -. is the symbol for successive application of rewrite rules [H080]. The

termination property states that there is no infinite chain of reductions (rewrite

applications) for any term M. If our system of rewrite rules has the termination property,

then the property of confluence is decidable [H0881. In fact, the Knuth-Bendix [KB67]

completion procedure can be used to augment the system of rules with additional rules to

make the system Church-Rosser. Unfortunately, even if we did come up with a general set

of rewrite rules that were Church-Rosser and terminating, additional problems relating to

the structure axioms sets makes ideal normalization infeasible, leading us to conclude

that some combination of non-ideal normalization and theorem proving is necessary.
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For example, Figures 3.9 and 3.10 show two OBJ3 specifications for a Set.

Both components define operations for constructing sets and testing membership, subset,

and equality. The main difference lies in the way each component tests for equality.

In Figure 3.9, a hidden5 "remove" operation is used to define the semantics of

equality. It is considered hidden because it is not included in the list of exported operations

defined in the ***(operations ...) comment. In Figure 3.10, the "subset operation is used to

define equality. This presents several problems. If we consider the "remove" operation in

Figure 3.9 to 1w hidden, then the semantics of the specifications are equivalent. Suppose

both of the specifications were passed through our ideal normalization procedure. To make

either of these specifications look like the other would require the system to know the

semantics of sets and set operations. We hypothesize that it may be possible to

automatically synthesize a "remove" operation for the specification in Figure 3.10 or to

eradicate the "remove" operation from the specification in Figure 3.9, but to do either would

be extremely difficult.

The above example is a simple case. The main problem with ideal

normalization using rewrite rules lies in the infinite variations possible in expressing

component semantics. Even if we could expect to get two semantically equivalent

specifications syntactically close, we would need additional help from the matching

algorithm to determine how well one specification satisfies the semantics of another. We

therefore turn to the other extreme, applying sophistication to the matching algorithm

rather than the normalization algorithm.

3. Matching via Theorem Proving

The previous section shows that we cannot rely completely on normalization (the

representation) to solve this information retrieval problem. This section focuses on the

search mechanism in order to reduce the complexity required in normalization.

5The term hidden is derived from the software engineering concept of information
hiding [Parn72] which states that the information contained within a module should be
inaccessible to other modules that have no need for the information. In the case of an
abstract data type (ADT), additional operations may be defined to support the function of the
ADT's primary operations. It is not intended for the user of the ADT to access these
auxiliary operations directly. Hence, they remain hidden.
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***(operations empty add member subset equal)
obj SETi is sort Set
protecting NAT .
op empty : -> Set.
op add: Nat Set -> Set.
op, member: Nat Set -> Bool.
op subset: Set Set -> Bool .
op equal : Set Set -> Bool .
op remove : Nat Set -> Set.
var El E2: Nat.
var S1S2: :Set.
cq add(El,S1) = S1 if member(E1, 51). [1l
eq member(El,empty) = false. [21
eq member(E l,add(E2,Sl1)) = El1 == E2 or member(El1,S1) . [3]
eq subset(empty,Sl1) = true. [4]
eq subset(Sl,empty) = false if 51 =1/= empty. [5]
eq subset(Sl, 51) = true. [6]
eq subset(add(El,Sl),S2) = member(El,S2) and subset(Sl,S2). [7
eq equal(empty,empty) = true. 181
eq equal(Sl, Si) = true. 191
eq equal(add(El1,Sl1),empty) = false . [10]
eq equal(empty,add(E1,Sl)) = false . [ill
eq equal(add(El,S l),add(E2,S2)) = member(E l,add(E2,S2)) and [121

equal(Sl,remove(El,add(E2,S2))).
eq remove(E l,empty) = empty. (131
eq remove(E1l,add(E 1,S 1)) = 51 . [14]
eq remove(El,add(E2,S 1)) = add(E2,remove(El,S 1)) if El i E2. [15]

endo

Figure 3.9 - OBJ3 Seicaonfor a Set

***(operations empty add member subset equal)
obj SET2 is sort set.

op empty : -> Set.
op add : Nat Set -> Set.
op, member : Nat Set -> Boo] .
op subset : Set Set-> Bool .
op equal : Set Set -> Boo] .
var El E2 : Nat.
var S1 S2 : Set.
cq add(El,Sl) = Si if member(El, 51). Ill
eq member(El,empty) = false . [21
eq member(E l,add(E2,Sl1)) = E 1= E2 or member(El1,S1) . [3]
eq subset(emptySl) = true. [4]
cq subset(Sl,empty) = false if S1 1 empty. [M1
eq subset(Sl, Si) = true. [6]
eq subset(add(El,Sl),S2) = member(El,S2) and subset(Sl,S2). [7
eq equal(Sl,52) = iubset(Sl,S2) and subset(S2,Sl). [8]

endo

Figure 3.10 -Alternative OBJ3 Specification for a Set
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Because each formal specification contains a set of axioms that taken together

constitute a theory, T, we can use theorem proving to show that the axioms of a query

specification are satisfied by a component specification. Given a query specification,

called a presentation Pq(lq, Eq) [Gogu88], its signature 1q, and its axioms Eq, we would

like to determine if a candidate component specification Pc(l~c, Ec) can satisfy the query.

We assume that there is a Is-homomorphism, h: YZq -+ Zc, that maps the signature of the

query to the signature of the component (determining this mapping is another problem in

itself, described later). Given the homomorphism, we can prove that a candidate satisfies a
query if we can show that each axiom, eqi, of the query is satisfied in the theory of the stored

component, Ec. Formally,

* Given: Pq(lq, Eq(eql...eqn)), pc(Zc, Ec(ecl...ecn)), and h: Zq -+ I c

* Then: PcIkPqiff Vi(li:n) Ec Ih(eqi)

In other words, a stored component Pc satisfies a query Pq if and only if there is a

homomorphism from Iq to Tc and each eq E Eq is satisfied in Ec.

a. Example

As an example, we refer back to Figures 3.9 and 3.10. If the specification in

Figure 3.9 were a query and the specification in Figure 3.10 corresponded to a stored

component, we would first need to find a mapping between the two components. We seek an

injective (one-to-one) mapping from the set of specified operations in the query to the

specified operations in the component. If we do not consider the "remove" operation in the

query (the designer must specify this), the mapping is trivial. Given the morphism, we

must show that axioms [1] through [15] of the query are each satisfied by stored-component

axioms [11 through [8]. The first seven axioms of the query are proven trivially since they

are identical to those in the stored specification. Axioms [8] and [9] of the query are proven

by first applying axiom [8] and then axiom [6] of the component. Axioms [10] and [11] of the

query are proven by axioms [8] and [5] of the component. At this point all of the remaining

axioms in the query make use of the "remove" operation. Since the designer specified that
Uremove" was a hidden operation (it was left out of the export list), it is not reasonable to

expect the library component to satisfy the "remove" axioms ([13] through [151). That leaves

us with axiom [121 which uses the "remove" operation. Since there are no semantics for the

remove operation in the stored component specification, axiom [12] cannot be proven

without constructing the definition of the hidden remove operation, which can be very

difficult to do automatically in the general case. Even though we know that the stored
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component satisfies the requirements of the query, it is very hard to show it conclusively

via theorem proving.

b. lsues

It is clear that theorem proving alone does not offer a complete solution to the

specification matching problem. Besides the problem highlighted above relating to hidden

operations, theorem proving has other drawbacks. In general, the process is slow and not

guaranteed to terminate. To be practical, the axioms for each stored component would have

to be canonical, but given our choice of specification language (OBJ3), it is not reasonable

to expect or enforce this. OBJ3 does not have order-sorted Knuth-Bendix and unification

algorithms and there does not exist a general method to check for termination [Gogu88].

4. Modified Assumptions

The difficulties inherent in both normalization using rewrite rules and theorem

proving led us to modify our assumptions about what normalization should be and what

constitutes a semantic match. We cannot rely on the rewrite rules to perfectly normalize

axioms just as we cannot rely solely on theorem proving to perform perfect matching. But

formal semantics should provide us with a means to compare components! A software

designer who understands algebraic semantics can compare the behavioral properties of

objects by analyzing the axioms. An automated matching system should be able to do the

same. The next section describes the details of our overall schema and the method we have

chosen to exploit formal semantics in the component retrieval problem.

D. SCHEMA FOR REUSABLE COMPONENT RETRIEVAL

Our proposed approach to reusable component retrieval is two-phased. The first phase

focuses on the numbers and types of parameters within each operator in the PSDL portion of

the query. This information is used to form a search key that partitions the software base,

quickly ruling out those components that cannot possibly satisfy the query because of type

incompatibilities. This phase, called the syntactic search phase, provides a set of

components to the subsequent semantic search phases. Syntactic search requires syntactic

normalization.

The second phase (semantic search), called query by consistency, relies on the formal

OBJ3 specification for each component. Query by consistency formulates example terms

from a query's algebra and passes the terms to its axioms for reduction. The set of outputs

obtained is compared against the outputs from similar tests performed in the domain of a

candidate. This phase reduces further the set of candidate components, eliminating
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components that cannot possibly satisfy the query because of behpvioral incompatibilities.

Query by consistency requires normalization of OBJ3 specification signatures and

axioms.

The following sections describe the details of syntactic normalization and matching,

and semantic normalization and matching.

1. Syntactic Normalization and Matching6

The purpose of syntactic matching is to rapidly eliminate trom consideration

those modules in the software library that cannot match the query specification's interface.

This matching process uses only the query module's PSDL interface specification. Once

those modules with unsuitable interfaces have been removed, only a small subset of the

software base needs to be semantically analyzed. The syntactic matching process reduces

the number of candidate modules sufficiently to make semantic matching feasible. For

small software bases, that is, "...where classes are contributed by a small number of

people, and the total number of classes does not exceed a few tens or perhaps a few

hundreds" [Meye88a, pp. 445-446], a browser is a practical alternative. As the software

base grows beyond this, however, other means such as syntactic and semantic matching

must be employed.

Before explaining syntactic normalization, we define what constitutes a

syntactic match. PSDL allows the definition of both type and operator modules. Since a

type module is a super-set of an operator module, the definition of an operator module

match will be given in detail and then extended for use with type modules.

The components of a PSDL specification p for a software component c, that are

important to the syntactic matching process are as follows:

S(p)=-( (In(t,n) : there are n occurrences of type t as input parameters to c),

(Out(t,m) : there are m occurrences of type t as output parameters to c},

(E : E is an exception defined in c),

(St : St is a state variable in c)

S(p), a subset of the PSDL specification for module c, is the only part of the

specification that pertains to the syntactic matching process. Given a software base module

m, and a query module q, along with their respective PSDL interface specifications S(m)

and S(q) then m is a syntactic match for q if and only if the following rules hold true:

6This section is abstracted from [McDo9l] with permission.
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Hfi : S(q) - S(m) st [(fi (In(t',n)q) = In(t,m)i 4 (m=n A (t=t' v t is a generic [1]
match to t))) A fi is bijective]

S f0o: S(q) - S(m) st[(fo(Out(t,n)q) = Out(t',m)o 4 (m=n A (t=t v t: is a generic [2]
match to t))) A fo is injective]

i if I {STq) I > 0 then I (STm) I > 0 else( (STq) I = I {STm) I = 0) [3]

This definition of a syntactic match could be used directly to determine if a

software base component could match a query specification's interface but would require

the system to check every component in the software base. This type of implementation

would be very inefficient. A better strategy uses matching rules to derive a set of module

attributes that can be used to rapidly identify and reject modules with unsuitable

interfaces. Some examples of these derived attributes include:

* If the number of input parameters in S(q) is not equal to the number input
parameters in S(m), then there can be no function fi to satisfy rule [1] without
considering the semantics of parameters. Therefore S(m) can be eliminated
from the search.

* If the number of output parameters in S(q) is greater than the number of output
parameters in S(m), then there can be no function fo to satisfy rule [2]. Therefore
S(m) can be eliminated from the search.

* If S(q) has state variables defined (i.e. q defines a state machine) but S(m) has no
state variables, then S(m) can be eliminated from the search.

Although passing these simple tests does not constitute a syntactic match, a

failure does eliminate the module from further consideration because it cannot be a

syntactic match. These attributes are derivable from the PSDL specification and can be

used to form multi-attribute keys. These keys allow rapid reduction in the size of the viable

subset of the software base via multi-attribute queries without the need to attempt to identify

the individual mapping functions for each module. For those modules that are selected by

the multi-attribute query, additional checks can be made to identify components that

cannot meet rules [1] and [2]. These checks form a filtering mechanism that removes any

unsuitable components from the query result.

The rules for syntactic metching of type modules are similar to those for operator

modules with the addition of a mapping function to map the operators of S(q) to the operators
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of S(m) and an additional check to ensure the generic parameter substitutions used for this

mapping function are consistent for all operators in S(m). Multi-attribute keys can be

formulated that incorporate these additional requirements. These keys can then used for

the initial type module database query and additional checks only applied to those modules

that are selected by the multi-attribute query.

2. Semantic Normalization and Matching

The task of the syntactic retrieval tool is to obtain a set of components from the

software base that meet the syntactic requirements of a query, based on the interface of the

query. The information about the interface is derived from the PSDL specification for the

query. Syntactic search is efficient, quickly excluding components that cannot possibly

match, resulting in a set of components that are passed to the semantic retrieval

mechanism.

The technique used for semantic retrieval is called query by consitency. Query

by consistency exploits the OBJ3 formal semantics in order to rule out components that are

not good candidates and rank order components that are. The method generates sample

terms from the term algebra of the query, performs reductions on those terms in both the

query and the candidates and compares the results. Candidates whose outputs correspond

more closely to the outputs of the query achieve a higher score and are deemed a better

match. A threshold score can be used to eliminate some components from consideration.

The details of query by consistency are covered in Chapter IV.

E. SUMMARY

In this chapter we described the model for reusable software component retrieval for

the Computer Aided Prototyping System. The paradigm of CAPS is to build prototypes based

on specification of requirements written in PSDL and OBJ3. Components to implement

requirements are sought using the formal specifications as keys to search the software

base. Efficient syntactic and semantic retrieval rely on normalization of the

specification. Syntactic normalization and matching should be fast and provide high

recall. Semantic normalization and matching improves precision. The remainder of

this dissertation describes the theory and implementation of semantic normalization and

retrieval.
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IV. COMPARING SPECIFICATION SEMANTICS

A. INTRODUCTION

This chapter describes a method for reusable software component retrieval using

normalized algebraic specifications. The method is called query by consistency (QBC).

Given a query for a software component in the form of an algebraic specification, QBC

automatically builds a set of example terms from the constructors provided in the signature

of the specification, performs reduction on the terms using the axioms in both the query and

stored components, and compares the results in order to eliminate some candidates and

rank order the ones that remain.

The chapter begins by explaining some of the background theory behind QBC and then

describes the techniques used for specification normalization, specification mapping, test

set and I/O list construction, term reduction, and interpretation of results. The chapter

ends with a formal explanation of the query/retrieval model that verifies its use as a

semantic retrieval mechanism.

B. BACKGROUND

Query by consistency compares two specifications by evaluating the equivalence of

algebraic terms reduced in the domains of the query specification and the specifications

corresponding to candidate components. Term reduction means submitting a term to the

specification axioms and performing term rewriting on the term until it has reached

normal form, that is, a form wherein no further reductions are possible. The list of

example terms (an I/0 list) used in the QBC method is generated from a base set of terms

called a test set . The test set is derived from the signature of the query.

The idea of using a test set stems from the work of Kapur and Zhang [KZ89] who

developed a refinement to an inductionless induction procedure called proof by

consistency [KM871. In proof by consistency using test sets, a canonical algebraic theory is

augmented by an axiom to be proven (a conjecture) and a new extended canonical theory is

incrementally computed using the Knuth-Bendix completion algorithm. Whenever a new

rule is generated during the process, the rule is checked against a test set to see if it reduces

any of the irreducible ground constructor terms contained in the set. If the new rule can

reduce a term in the test set, then the conjecture is not a theorem.
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The test set is the key to proof by consistency. It is a finite set of terms that describes the

equivalence classes of constructor ground terms. For example, a test set for integers with

successor (suc) and predecessor (pre) constructors would be (0, suc(O), suc(suc(x)), pre(O),

pre(pre(y))). The test set used in QBC is similar to that used in proof by consistency. It is

explained in more detail in Section IV.E.

The implementation of QBC is in the form of two executable programs. The first is a

program to normalize the specifications that accompany components to be stored. The

second program is used for matching a query specification to the specifications of

candidate components. The following sections explain the processes. Implementation

details are covered in Chapter V.

C. NORMALIZATION

Before a component is stored in the software base, its OBJ3 specification must be

normalized. This normalization is performed when the component is stored to save time

during the matching process. Just prior to matching, the query specification must be

normalized. In both cases,. expansion and instantiation are needed to make the

specification an atomic unit. Interface normalization is also required for both

specifications, but the result is different in each of the normalization routines. The

following sections describe expansion, instantiation, and interface normalization.

1 . Expansion and Instantiation

Expansion and instantiation in normalization was developed in the context of the

Algebraic Specification Formalism (ASF) [BHK89]. In this approach, a normal form is

achieved when all imports to a specification have been eliminated and as many

parameters as possible have been eliminated. ASF's textual normalization expands a

module by fully incorporating the sorts and functions of im)orts and by binding

parameters to the greatest extent possible. The purpose of this normalization in ASF is to

assign a semantics to the complete specification and to each module within the

specification. In the process of normalizing, the algorithm renames sorts and functions to

avoid conflicts; establishes the origin of each sort, function and variable, creating an

attribute collocated with each definition; and binds formal with actual parameters.

In the system described in this dissertation, the normalization process also

performs expansion and instantiation where necessary. The expansion is necessary

because the module will be considered an atomic unit during the matching process.
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Renaming is not performed in the system because OBJ3 allows operator overloading1 .

The following example illustrates this concept using a specification for a List (see Figure

4. 1) and one for a BiTuple (see Figure 4.2). (Note: The ellipses that appear in many of the

example specifications mean that there is more to the specification than is actually being

shown.)

obj LIST[Item :: TRI] is sort List.
protecting NAT.
protecting BOOL.
op nil : -> List.
op cons : Item List -> List.
op length : List -> Nat.
op head : List -> Item.
op tail : List -> List.
op append : List List -> List.
op reverse: List -> List.
op member : Item List -> Bool.

endo

Figure 4.1 - Signature for a List

obj BITUPLE[C1 :: TRIV, C2 :: TRW] is
sort BiTuple.
op make : Elt.C1 Elt.C2 -> BiTuple.
op first: BiTuple -> Elt.C1.
op second: BiTuple -> Elt.C2.

endo

Figure 4.2 - Interface Description for a BiTuple

Suppose one used the List defined in Figure 4.1 in the following way:

obj LIST-OF-BITUPLE is
protecting LIST[BITUPLE[NATNAT]].
op member : Nat List -> Nat.

endo

11n the current implementation of the system, it is assumed the designer has used
unique names in specifying all operators, hence overloading is not supported. In Chapter
VII a simple procedure is defined to remedy this situation and permit operator
overloading.
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The user has defined his own object which is composed of the List object and an

object called BiTuple that defines a relation of 2 elements. The user has also defined a

member function that returns the second argument of a tuple in the list given the first

argument. The expanded version of the object is shown in Figure 4.3. It was necessary to

instantiate the sort Item in object List as BiTuple and the elements of BiTuple as Nat.

obj LIST-OF°BITUPLE is sort List.
sort BiTuple.
protecting NAT .
protecting BOOL.
op nil : -> List.
op cons : BiTuple List -> List.
op make: Nat Nat -> BiTuple.
op length : List -> Nat.
op head : List -> BiTuple.
op tail : List -> List.
op append List List -> List.
op reverse : List -> List.
op member: BiTuple List -> Bool.
op first : BiTuple -> Nat.
op second : BiTuple -> Nat.
op member : Nat List -> Nat.

endo

Figure 4.3 - Interface Description for a List of BiTuple

The object in Figure 4.3 is expanded further by importing all operators and

axioms defined in modules NAT and BOOL. The final step in this part of the

normalization process is to store into a file the sorts, operators, and axioms defined in this

atomic object. Interface normalization will add more information to this file.

2. Interface Normalization

Having performed expansion and renaming, the signature is now transformed

to simplify mapping. Since Prolog is used as the tool to find the mappings between a query

and a candidate component, each operator definition in the signature is transformed into a

set of Prolog predicate expressions. To guide this transformation, it is necessary to have

more information about the operators than is provided in the specification, that is, which of

the operators the user wants considered.

For example, if the specification shown in Figure 4.3 were used as query to the

software base, the user may not need all of the operators that come with the List object. A
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more general query with fewer op definitions would certainly offer better recall from the

software base. Also, the user may have defined hidden or local operators in his object that

he does not require the stored component to provide. It is therefore left up to the user to

specify the operators he wishes to have considered. A specification used for a query may

have only a few of the operators identified, whereas a specification accompanying a

component to be stored may have all operators identified. Figure 4.4 shows an example of

the LIST-OF-BITUPLE used as a query and Figure 4.5 shows it used as part of a component

to be stored.

***(operations nil cons make append length)

obj LIST-OF-BITUPLE is sort List.
sort BiTuple.
protecting NAT.
protecting BOOL.

endo

Figure 4.4 - List of BiTuple as a Query

***(operations nil cons tail append reverse

make length head first second member)
obj LIST-OF-BITUPLE is sort List.

sort BiTuple.
protecting NAT.
protecting BOOL.

endo

Figure 4.5 -List of BiTuple for Storage

The specifications in Figures 4.4 and 4.5 have been augmented with OBJ3

comment blocks, ***(comment)", to indicate the operators the user wants considered.

From this information and that contained in the signature, the necessary Prolog predicate

expressions may be generated. For each operator specified in the signature, a

corresponding operator predicate is defined, and for each input parameter in the operator

an argument predicate is defined. The set of predicates for the specification in Figure 4.4

is:

operator(BITUPLE, 2, MAKE)
argument(MAKE, nat, MAKE1)
argument(MAKE, nat, MAKE2)
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operator(LIST, 0, NIL),
operator(LIST, 2, CONS),
argument(CONS, BITUPLE, CONS1)
argument(CONS, LIST, CONS2)
operator(nat, 1, LENGTH)
argument(LENGTH, LIST, LENGTH 1)
operator(LIST, 2, APPEND)
argument(APPEND, LIST, APPEND1)
argument(APPEND, LIST, APPEND2)

Each operator predicate expression has 3 arguments: a variable to bind to the

range sort of a stored component's operator, the number of domain (input) parameters in

the operator, and a variable to bind to the name of a stored component's operator. Each

argument predicate expression has 3 arguments: a variable to bind to an operator name,

the sort of this particular parameter, which may be a constant or a variable, and the position

of the parameter in the domain of the operator. The example predicates above contain

many variables (identifiers that are capitalized) because the specification in Figure 4.4 is

meant to be a query and the query parameters must bind to the operator names and sorts of

some stored component.

The choice of the arguments in the predicate expressions reflects some of the

assumptions made about what constitutes a match between specifications. For instance, the

number of parameters present in the operators must match precisely even though one can

conceive of possibilities where an operator with two variable parameters, for example,

could match to an operator with two variable parameters and a constant parameter. A rule

used in finding a match is that all of the operators of the query must bind to unique

operators in the component (the mapping is injective). This is based on the assumption that

an engineer will not define identical semantics for any two operators in the same

specification.

The order of the arguments in the predicate expressions is important for

efficiency. Quintus PrologO [Quin9 0 ] (the form of Prolog used for this portion of the

implementation) hashes on the first argument of a predicate expression when that

argument is bound. Using the range sort of an operator as the first argument of the operator

predicate partitions the operators into smaller sets. Once a particular range sort variable

has been bound, the search for subsequent matches will be very fast. The first argument of

the argument predicate is the name of the operator because this variable is always bound in

the operator predicate that precedes it. Thus, the search for appropriate arguments is also

fast.
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The set of predicate expressions for the specification in Figure 4.5 is:

operator(list, 0, nil)
operator(list, 2, cons)
argument(cons, bituple, 1)
argument(cons, list, 2)
operator( bituple, 2, make)
argument(make, nat, 1)
argument(make, nat, 2)
operator(nat, 1, length)
argument(length, list, 1)
operator(bituple,1, head)
argument(head, list, 1)
operator(list, 1, tail)
argument(tail, list, 1)
operator(list, 2, append)
argument(append, list, 1)
argument(append, list, 2)
operator(list, 1, reverse)
argument(reverse, list, 1)
operator(bool, 2, member)
argument(member, bituple, 1)
argument(member, list, 2)
operator(nat, 1, first)
argument(first, bituple, 1)
operator(nat, 1, second)
argument(second, bituple, 1)
operator(nat, 2, member)
argument(member, nat, 1)
argument(member, list, 2)

The predicate expressions derived from the specification in Figure 4.5 are treated

as Prolog facts during the mapping phase. The predicate expressions from the

specification in Figure 4.4 must be combined in some way to form a Prolog query. The

next section covers the use of Prolog in the mapping process.

D. MAPPING QUERIES TO STORED COMPONENTS

1. Prolog as the Mapping Tool

Expansion and renaming are required to make a component an atomic unit for

both storage in the software base and for comparison with the query by consistency

algorithm. The Operator-definition to Prolog predicates transformation is necessary to

provide the means to map a query to a candidate stored component using Prolog. To find a

matching candidate in Prolog, the predicate expressions provided by the query are

combined to form a Prolog rule. To that rule, additional predicate expressions are added to
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ensure that all bound operator names are unique and that for each operator, all parameter

positions are unique. The predicate expressions provided by a candidate component are

used as a database of facts in an attempt to satisfy the query. Figure 4.6 shows an example

of the Prolog query generated from the specification in Figure 4.4.

query(OutStream) :-
operator(BITUPLE, 2, MAKE),
argument(MAKE, nat, MAKE1),
argument(MAKE, nat, MAKE2),
unique([MAKE1, MAKE2]),
operator(LIST, 0, NIL),
operator(LIST, 2, CONS),
argument(CONS, BITUPLE, CONS1),
argument(CONS, LIST, CONS2),
unique([CONS1, CONS2]),
operator(nat, 1, LENGTH),
argument(LENGTH, LIST, LENGTH1),
unique([LENGTH1]),
operator(LIST, 2, APPEND),
argument(APPEND, LIST, APPEND1),
argument(APPEND, LIST, APPEND2),
unique([APPEND1, APPEND2]),
unique([MAKE, NIL, CONS, LENGTH, APPEND]),
store(OutStream, [MAKE, 2, BITUPLE, nat, MAKE1, nat,

MAKE2, NIL, 0, LIST, CONS, 2, LIST, BITUPLE, CONS1,
LIST, CONS2, LENGTH, 1, nat, LIST, LENGTH1,
APPEND, 2, LIST, LIST, APPEND1, LIST, APPEND2,
end]), fail.

query(OutStream) :- generic(G), store(OutStream, [generic, G]).

Figure 4.6 - Example Prolog Query

In the above example, the query in Figure 4.4 maps in four ways to the component

of Figure 4.5. With some combinations, many mappings will be possible, but only one

might be meaningful. This complicates the task of the overall query by consistency

algorithm. For each candidate component, the algorithm must check every possible

mapping. In the worst case, this task is worse than exponential in the number of operators

with identical domain and range sorts. If one allows variables in stored components,

which is the case when we store generic components, the problem is exacerbated. Chapter

VII offers some suggestions to alleviate this problem. Figure 4.7 shows the mapping results
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of having applied the query of Figure 4.6 to the Prolog facts listed above. The appendix lists

the Prolog code that drives the mapping process.

[make,2,bituple,nat, 1,nat,2,nil,O,1ist,cons,2,list,bituple,l,list,2,
length,1,nat,list, 1,append,2,list,list, 1,list,2,end]

[make,2,bituple,nat, 1,nat,2,nil,O,1ist,con s,2,list,bituple, 1,list,2,
length,1,nat,list, 1,append,2,list,list,2,list, 1,end]

[make,2,bituple,nat,2,nat, l,nil,O,ist,cons,2,list,bituple,l,list,2,
length, 1,nat,list, 1,append,2,list,list, 1,list,2,end]

[make,2,bituple,nat,2,nat, l,nil,O,ist,cons,2,list,bituple, 1,list,2,
length, 1,nat,list, l,append,2,list,list,2,list, 1,end]

[generic,[]]

Figure 4.7. Mapping Results from Prolog Query

2. Checking Generic Consistency

A boon to the concept of reusable software is the generic component. The

designers of CAPS expect the software base to contain a large number of generic

components, although no predictions have been made as to what the percentage of generic

components will be. It is therefore essential that the retrieval system have the capability to

map queries to generic components. Figure 4.8 shows a specification for a generic

component that models a list abstract data type.

***(operations nil cons car cdr)

obj GENERIC-LIST[X :: TRV] is sort List.
subsort Elt < List.
op nil : -> List.
op cons Elt List -> List.
op car :List ->Elt.
op cdr List -> List.
var I, J Elt.
var L: List.
eq car(cons(I,L)) = I.
eq cdr(nil) = nil.
eq cdr(cons(I,L)) = L.

endo

Figure 4.8 - OBJ3 Specification for a Generic List

Figure 4.9 shows the Prolog representation of the signature. Note that there are

underscores (. in some of the predicate expressions in Figure 4.9. The underscores

represent Prolog variables that bind to any argument. Because of the flexibility inherent

in this representation scheme, inconsistencies can arise during the mapping process, that
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is, the variable that represents the single generic parameter (in this example) may bind to

different sort values when the query is made 2 . If these bindings are inconsistent, the

mapping is erroneous (a proper instantiation cannot be made) and that mapping must be

discarded.

operator(list, 0, nil).
operator(list, 2, cons).
argument(cons, -, 1).
argument(cons, list, 2).
operator(_, 1, car).
argument(car, list, 1).
operator(list, 1, cdr).
argument(cdr, lis'., 1).
generic([[car, 0, x, 1], [cons, 1, x, 1]]).

Figure 4.9 - Prolog Predicate Expressions for an
OBJ3 Specification of a Generic List

This check for generic consistency is made as the results of the Prolog query are

scanned. In the current implementation, the generic parameters must map to predefined

sorts. The system does not have the ability to extract features from a user query and use

them to instantiate a stored generic component in order to perform QBC. This would be a

useful extension and is examined in Chapter VII.

After the mapping and check for generic consistency are completed, then,

assuming there is a mapping between the query and a candidate, the next step is to create a

test set.

E. GENRATING A TEST SET

A test set is a set of terms that represent the equivalence classes of constructor ground

terms that can be generated by the signature defined within an object. The test set has also

been referred to as a signature of constructors [Gogu88]. Formally, a signature, I = (S, 0,

consists of a set, S, of sorts and a set f of function symbols. The set f is the union of pairwise

disjoint subsets Cs and fw,s where Cs is a set of constant symbols of sorts s e S and fw,s is a

set of operator symbols with domain sorts w E S + (one or more domain sorts) and range s E

2 1n Prolog, the scope of a variable is limited to a single rule, fact, or query. For
example, using the same variable A in place of the two underscores in Figure 4.9 would
make no difference. Both A's would be treated as different variables.
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S [EM85]. The test set [I is a set of terms with arities that correspond to a subset of the

operators in f.

The reason for generating a test set is to have a collection of terms from which to build

example terms to submit to the axioms for reduction. In a normalized object, the set f may

contain a large number of functions due to importation and instantiation. Only a subset of

these functions, the signature of constructors, is needed for the test set ('I n. T). For the

predefined sorts that appear in the object, there are standard, predefined test set terms that

are read from a file. Because predefined terms are used, it is not necessary to consider any

function in f whose range sort is one of the predefined sorts. For example, the predefined

terms for sort Nat are its constructors, 0 and succ(N). These terms serve as an inductive

definition of natural numbers. The constant term 0 represents an equivalence class

containing one term, whereas the term succ(N) represents an equivalence class

containing all natural numbers not including 0. Since these terms represent all natural

numbers, it is not necessary to have any other terms in the test set whose range sort is Nat.

For user defined sorts, however, the test set must include terms corresponding to all

operators in f whose range sort is one of the user defined sorts, but constrained by the list of

export operators in the comment block. By including all of these functions, the process

guarantees that there is a complete description of the classes of terms that can be composed

for each user-defined sort. Figure 4.10 shows the test set generated from the expansion of

the specification in Figure 4.4 (See the Appendix for the definitions of the objects NAT,

NZNAT, and BOOL.).

Zero: 0
Nat: 0
Nat: succ(natconstl)
NzNat: 1
NzNat: succ(nznatconstl)
Bool: true
Bool: false
List: nil
List: cons(!!!, listconstl)
List: append(listconstl, listconst2)
BiTuple: make(!!!, !!!)

Figure 4.10 - Test Set for List of BiTuple

After expansion and instantiation, the sorts used in the query for a list of bituple are

Zero, Nat, NzNat, Bool, List, and BiTuple. The sets of constructors for Zero, Nat, NzNat,
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and Bool are minimal, that is, no more and no fewer constructors are required to define all

of the ground terms for those sorts. The set of constructors for BiTuple is a minimal set

since there is only one constructor for sort BiTuple. The set of constructors for List is not

minimal since only nil and cons are required but append is also included. It must be

included since the process that selects the operators cannot know (without possibly

examining the axioms) which constructors for user-defined sorts make a minimal set.

The exclamation points in some of the test set terms are placeholders. They represent

arguments that must be filled when using the term to build an I/O list input. A placeholder

will be filled with a term having the appropriate sort. Some of the test set terms also contain

constants such as natconstl and listconstl. Constants within the terms serve two purposes:

to represent an inductive definition of the sort (as in the case of succ(natconstl)) and to help

avoid infinite term expansion when building the I/O list (as with append(listconstl,

listconst2)).

F. BUILDING THE INPUT TERMS OF THE I/O LIST

An I/O list, 92, is a list of terms that will be used as sample inputs to query and

candidate component axioms. The 1/0 list is built from terms in the test set. The process of

building an 1/0 list starts with an initial 1(0 list or template defined by the user-specified

export operators in the ***(operations ...) comment block. The process then expands the

template with terms from the test set. During expansion, care must be taken to avoid

circularities, which can occur when an operator's range sort is identical to one of its

domain sorts.

1. Initial Template and Expansion

The initial 1/0 list is a template of the user-specified export operators. The initial

1/0 list for the specification in Figure 4.4 is:

nil
cons(!!! !)
make(!!!, !!!)
append(!!!, !!!)
length(!!!)

Each operator exported by the user occupies one place in the list and each

parameter for operators with parameters is filled with a placeholder. Just as in the test set,

a placeholder represents an expansion slot that will be filled by a term of the appropriate

sort.
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To expand the I/O list, the process begins at the front of the list and scans for a

term containing a placeholder. When the term and placeholder are found, n new terms

are created, where n is equal to the number of terms in the test set whose range sort matches

the sort of the placeholder. The new terms created are identical to the term containing the

placeholder. In each of the new terms, the placeholder is replaced by a test set term having

the appropriate range sort. These expanded terms are then appended to the end of the I/O

list. The process then deletes the original term containing the placeholder from the 110 list

and moves on to check the next term. The process continues until all terms containing

placeholders have been expanded and all placeholders have been eliminated.

The result of this expansion process is a list of terms that collectively (and

exhaustively) represent each export operator and the classes of arguments it may have.

The following terms are a sample from the I/O list for the query in Figure 4.4.

nil
make(O, 0)
make(O, succ(natconstl))
make(succ(natcoristl), 0)
make(succ(natconstl), succ(natcons. 1))
cons(make(0, 0), nil)
cons(make(O, 0), append(listconstl, listconst2))
cons(make(0, succ(natconstl)), nil)
cons(make(O, succ(natconstl)), append(listconstl, listconst2))
append(nil, nil)
append(nil, append(listconstl, listconst2))
append(append(listconstl, listconst2), nil)
append(append(listconstl, listconst2), append(listconstl, listconst2))
length(nil)
length(append(listconst 1, listconst2))
length(cons(make(natconstl, natconstl), listconstl))

The entire 1/0 list contains 68 terms. Each term is comprised solely of operators

or constant constructors (OBJ3 cannot perform reductions on terms containing variables).

The number of terms in the I/O list depends on many factors including the number of

operators in the export list, the number of parameters within the operators, the number of

test set terms that correspond to the sorts of each parameters, and the rules for avoiding

circularities during term expansion.

2. Checking for Circularities

In the process of expanding the 1/0 list, 9, it is possible to encounter situations

where expansion would continue ad infinitum. There is a single rule that is used to avoid

58



this situation. Suppose a term w) (from the 1/O list) contains a placeholder and the parent of

that placeholder is (op, that is, some operator within o (In many cases o = Owp.). Then if a

term n (from the test set) will be used to expand the placeholder in Op, then nt must not

contain a placeholder with the same range sort as wp or with the same range sort as (o. If

either situation is encountered, the placeholder in 7c is replaced by a constant of the

appropriate sort before n is used to expand o. Any constants used in the terms in the I/O list

must be declared as constant operators within the module. This task is accomplished in the

next phase of the process, that of generating output terms in the query domain.

G. GENERATING OUTPUT TERMS IN THE QUERY

I. Reductions in the Query Domain

Having created the input half of the I/O list, we submit the terms to the axioms of

the query using the OBJ3 environment to determine output results. OBJ3 uses term

rewriting to reduce each input term to a normal form, that is, a form where no further

reductions are possible. The corresponding outputs to the above list of inputs are:

nil
make(O, 0)
make(0, succ(natconstl))
make(succ(natconstl), 0)
make(succ(natconst1), succ(natconstl))
cons(make(0, 0), nil)
cons(make(0, 0), append(listconstl, listconst2))
cons(make(0, succ(natconstl)), nil)
cons(make(0, succ(natconstl)), append(listconstl, listconst2))
nil
append(listconstl, listconst2)
append(listconstl, listconst2)
append(append(listconstl, listconst2), append(listconstl, listconst2))
0
length(append(listconst 1, listconst2))
sum(l, length(listconstl))

Note that many of the outputs are identical to the inputs. This will be the case when

the input term is composed solely of constructor operators having no corresponding

axioms, such as:

nil and
cons(make(O, 0), nil).
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This is also the case when the term contains constants that cannot be reduced by

axioms, such as:

length(append(listconstl, listconst2)).

The fact that no rewriting was performed on those terms is just as important to the

method as the knowledge obtained from a term reduction. No reduction means that in the

domain of the query, the term is only syntactically defined. If, however, in the component

domain, the same term is reduced then the process will have detected a dichotomy between

the specifications.

2. Parsing the Results

As the terms are reduced by the OBJ3 rewrite system, the normal form of each

term is written to a file. In order to read the terms from the file and store them in the 1/0

list, it is necessary to parse them. Since the terms are in prefix form, this task is

simplified. A parser parses each output and stores it in the output half of the 1/0 list

corresponding to the term's input. The 1/0 list is now complete, that is, both the inputs and

outputs have been determined. The system may now perform semantic matching with the

cancidate component.

H. OUTPUTS IN THE CANDIDATE COMPONENT DOMAIN

Given a complete I/O list in the query domain and a set of mappings to the candidate

component, the system performs (for each map) I/O list transformation, followed by term

rewriting in the component domain, and inductionless induction to derive a score for the

map.

1. 1/0 List Transformation

The names of the operators, the names of sorts, and the positions of parameters in

the signature of the query will most likely be different than the corresponding operators,

sorts, and parameters in the candidate component. Before rewriting of the I/O list terms

can take place in the domain of the candidate component, the terms must be transformed to

the domain of the candidate using one of the mapping functions. Since 1/0 list term output

comparison will be performed in the domain of the candidate component, it is necessary to

transform both the inputs and outputs to the component domain.
Formally, an I/O list is a set of terms Qq, where each (oqi will be used as an input

term to the axioms of the query. Reduction generates the term's normal form, 'qi. These
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inputs and outputs must be mapped to the component domain using a mapping function h:

Iq -4 Ic that maps terms derived from the signature of the query to terms from the

signature of the stored component, yielding hoCqi and hcO'qi. The reduction of the input,

h03qi', and the comparison to the transformed query domain output, hc'qi', are performed

simultaneously using a theorem proving method known as inductionless induction.

2. Inductionless Induction

Inductionless induction is a theorem proving method "...which uses purely

equational reasoning (in the form of rewrite-rules) to prove theorems valid in an initial

algebra that would normally have to be proved by induction." [MG85, p. 524] A Y-algebra is

initial in a class of Z-algebras if and only if there is one and only one Z-homomorphism

from that algebra to all other L-algebras in the same class [MG85. All instantiated object

specifications in OBJ3, that is, those that are executable, are initial [Mese91].

An inductionless induction procedure is a built-in feature of OBJ3. Terms are

compared by asking the system to reduce:

term 1 == term2.

Since the system described in this dissertation uses prefix format for functions, the syntax

actually used is:

==(terml, term2).

For each transformed I/O list pair, a term comparison is performed by substituting the

transformed input for term1 and the transformed output for term2. OBJ3 then performs

reductions on termi to reduce it to normal form and then compares terml and term2 for

equivalence 3 . Operator attributes, such as associativity and commutativity, are applied in

the check for equivalence.

The final result of a term comparison will be one of two terms: true or false. If the

result is true, then the terms have been proven equivalent. This means that with respect to

that term comparison, the two specifications are behaviorally equivalent. The

component's behavior satisfies the query's requirement. A false result means that the

terms could not be proven equivalent. This result suggests that the two specifications are

30BJ3 actually attempts to reduce both term1 and term2 to canonical form before
comparing the terms for equivalence. If, however, OBJ3 is allowed to reduce term2, which
is the transformed normal form of term1 from the query domain, then term2 may be
modified by the axioms of the component domain and would therefore no longer be a true
representation of the semantics used to reduce it in the query domain. Thus, the
comparison of term1 and term2 would be meaningless. The OBJ3 proof mechanism was
altered to prevent reductions on term2. This change to OBJ3 is given in the Appendix.
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not behaviorally equivalent with respect to that term. The proof process is a semi-decision

procedure for determining the equivalence of two terms. The true and false results are

used in the scoring method described in the next section.

3. Interpreting the Results

The result of submitting each transformed I/O pair to the inductionless induction

procedure is a term with the value true or false. The semantic matching system uses a

simple scoring mechanism, based on these true and false results, to select the best map for a

given component and to ultimately rank order a set of components. The score given to a

particular map is the ratio of the number of 1/O pairs that reduce to true to the total number of

1/0 pairs reduced. For example, if 50 1/0 pairs were reduced and the result was true for 40

of them, the score for that map would be 80%. Once all of the maps have been tried, the best

score is used as the component's score in comparing against other candidate components.

There are other factors that could be used in scoring that have not been

implemented. These are described in Chapter VII. Also, a threshold value could be

assigned to eliminate some components from further consideration. The use of a threshold

is not implemented, but is described as an extension to the system in Chapter VII.

I. VERIFICATION OF THE MODEL FOR RETRIEVAL

The system described in the preceding sections has been implemented. The

implementation is described in Chapter V and examples are given in Chapter VI. In order

to provide empirical results of system usage, a large software base would be required, but is

not yet available. Therefore, this section presents a formal model of the system with

respect to the forms of specifications, the test set, the I/O list, and the inductionless

induction proof technique. Figure 4.11 illustrates the formal model of query by

consistency. The numbers in the diagram of Figure 4.11 are explained in Table 4.1 which

describes the diagram. The numbers are also referenced in the sections that follow.
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Figure 4.11 - Formal Model of Query by Consistency

TABLE 4.1 - EXPLANATION OF FIGURE 4.11

Step Explanation of Function
(1) Export signatures are derived from the query and stored component

presentations.
(2) A mapping, h, between the export signatures is determined.

(3) A test set (signature of constructors) is derived from the query presentation.

T An 1/0 List is generated from the export signature and the test set.

Each term in the 1/0 list will be processed in steps @ through 9.

( An 1/0 list term is reduced in the query domain.

An I/O list term is mapped to the stored component domain using an
augmented mapping function.

S The result of the reduction in step 6 is mapped to the component domain using
an augmented mapping function.
The term mapped to the component domain in step ®Z is reduced in the
component domain.
The term resulting from the operations in steps ® and ® are compared for
equivalence using inductionless induction.
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1. The Specification Model

The formal specifications for both stored components and queries are written in

OBJ3. Each object specification is considered a presentation P(X,, E). In this dissertation,

a presentation for a query will be subscripted with a q, Pq(l:q, Eq), and a presentation for a

stored candidate component will be subscripted with a c, Pc(Ec, Ec). A single presentation

represents the query and a set of presentations represent the components that were retrieved

by the syntactic search (see section III.D.1). Each presentation consists of a signature, 1,

and a set of axioms, E. The signature, Z=(S, f), consists of a set, S, of sorts and a set, f, of

function symbols. The set f is the union of pairwise disjoint subsets Cs and fw,s where Cs

is a set of constant symbols of sorts s e S and fw,s is a set of operator symbols with domain

sorts w E S+ (one or more domain sorts) and range s E S [EM85]. The axioms, E, define the

abstract, denotational semantics for the object. The language is executable by treating the

equations as rewrite rules, substituting matched instances of left-hand sides with

corresponding right-hand sides.

2. Normalization

Normalization extends the presentation or definition of an algebra by adding

another presentation, P'(', E'), to the given presentation. It is assumed that all module

importation is performed with the protecting statement (see Section 3.B.3.d) resulting in

"no junk" and "no confusion." [MG85, p.464] Object extension then, is simply the union of

two or more presentations, that is,

P u PI = F'(Z u I', E u E')

where P" is the presentation of the new expanded object. In Figure 4.1, the presentations at

the top of the figure are considered normalized. It is assumed, before normalization, that

the specification to be normalized is syntactically correct and correctly models the

behavior of some Ada software component (either sought or to be stored). It is also assumed

that after normalization, a specification to be used for a query will be fully instantiated

object. The system does not currently perform any checks to ensure these assumptions are

satisfied.

3. The Export Signature

When storing a component in the software base or submitting a query, the user

must augment the specification of the object with an OBJ3 comment block that specifies the

operators that the object will export. For example, if the user queries for a stack abstract

data type, the OBJ3 comment block might be:

***(operations empty push pop top)
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The operators specified in the comment block must be identical to the symbols used in the

signature of the object to define those operators. Hence, an export signature , e,is a subset

of the signature Y, G C 1, where each operator symbol in G is a member of the set of

operators specified in the comment block.

Step ( in Figure 4.11 shows the derivation of the export signature for both

presentations.

4. Mapping a Query to a Stored Component

The export signatures are used to determine the mappings from the query to the

stored component. In order for a component to satisfy a query, there must be a a-

homomorphism, m: 0 q -- 0 c, such that:

mfq(O1 ...On) = fc(m(01)...m(On))

where 01 through On are the individual operators in 0. Furthermore, the homomorphism

must be injective, that is, each operator of the query maps to a unique operator in the

component. Research by Goguen and Meseguer [Gogu88, GM85] provide the definitions of

mapping functions between many-sorted algebras. To identify a mapping function, it

must be demonstrated that the correlation between sorts and operator symbols satisfy

certain properties or rules. The rules for identifying a mapping function between two

export signatures are:

1. There must be an injective mapping between the operator symbols in Gq and the

operator symbols in Oc and a mapping between their respective domain and
range arguments (using rules 2 and 3).

2. There must be a bijective mapping between the domain sorts of a query operator to
the domain sorts of a candidate component operator (using rules 4 and 5).

3. The range sort of a given query operator must map to the range sort of a candidate
component operator (using rules 4 and 5).

4. A predefined sort in the query (treated as a constant) must map to an identical
predefined sort in the stored component.

5. A user-defined sort in the query (treated as a variable) may map to either a
predefined sort or author-defined sort in a stored component.

6. All bindings of user-defined sorts in the query to sorts in the candidate
component must be consistent.
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Figure 4.12 shows the Prolog database generated from the specification in Figure

4.5. and Figure 4.13 repeats (for convenience) Figure 4.6, the Prolog query generated from

the specification in Figure 4.4.

operator(]ist, 0, nil). argument(append, list, 1).
operator(list, 2, cons). argument(append, list, 2).
argument(cons, bituple, 1). operator(list, 1, reverse).
argument(cons, list, 2). argument(reverse, list, 1).
operator( bituple, 2, make). operator(bool, 2, member).
argument(make, nat, 1). argument(rnember, bituple, 1).
argument(make, nat, 2). argument(rnember, list, 2).
operator(nat, 1, length). operator(nat, 1, first).
argument(length, list, 1). argument(first, bituple, 1).
operator(bituple, 1, head). operator(nat, 1, second).
argument(head, list, 1). argument(second, bituple, 1).
operator(list, 1, tail). operator(nat, 2, member).
argument(tail, list, 1). argument(m ember, nat, 1).
operator(list, 2, append). argument(member, list, 2).

Figure 4.12 - Example Prolog Database

query(OutStream)
operator(BITUPLE, 2, MAKE),
argument(MAKE, nat, MAKE1),
argument(MAKE, flat, MAKE2),
unique([MAKE1, MAKE2]),
operator(LIST, 0, NIL),
operator(LIST, 2, CONS),
argument(CONS, BITUPLE, CONS 1),
argument(CONS, LIST, CONS2),
unique([CONS1, CONS21),
operator(nat, 1, LENGTH),
argument(LENGTH, LIST, LENGTH 1),
unique([LENGTH 1]),
operator(LIST, 2, APPEND),
argument(APPEND, LIST, APPEND 1),
argument(APPEND, LIST, APPEND2),
unique(IIAPPEND 1, APPEND21),
unique([MAKE, NIL, CONS, LENGTH, APPEND]),
store(OutStream, [MAKE, 2, BITUPLE, nat, MAKE1, nat,

MAKE2, NIL, 0, LIST, CONS, 2, LIST, BITUPLE, CONSi,
LIST, CONS2, LENGTH, 1, nat, LIST, LENGTH1,
APPEND, 2, LIST, LIST, APPEND 1, LIST, APPEND2,
end]), fail.

query(OutStream) :-generic(G), store(OutStream, [generic, GI).

Figure 4.13 - Example Prolog Query
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Operator predicate expressions map range sorts, number of domain arguments,

and operator names. Argument predicate expressions map argument sorts and positions

given an operator name. The unique predicate expression ensures that the elements of a

given list are all unique.

Mapping rule 1 is satisfied since the operator names in the query are variables

(Prolog variables begin with a capital letter), the operator names in the candidate

component are constants, and the query ensures, using the unique predicate, that all

bindings to component operator symbols are unique. Mapping rule 2 is satisfied using the

second argument of the operator predicate, the argument predicates, and the unique

predicate. The operator predicate maps range sorts of the operators, satisfying mapping

rule 3. For mapping rule 4, predefined sorts in the query and stored component are

represented as Prolog constants and must be identical in order to map. For mapping rule 5,

a user-defined sort in the query is represented as a Prolog variable and will map to either a

predefined sort or author-defined sort in the stored component since they are represented as

Prolog constants.

Mapping rule 6 is the final challenge. The Prolog query uses the same variable

name throughout the query to represent user-defined sorts. If the query succeeds, then the

binding to that variable must be consistent throughout. However, if the candidate

component contains generic sorts, which are represented as anonymous Prolog variables

(U, the mapping to these sorts may be inconsistent. In other words, two different sorts in

the query could map to the same generic sort in the stored component. The bindings to the

generic sorts must be checked after the Prolog query is complete. A procedure called

CheckGenericConsistency performs this task and discards the maps that are

inconsistent.

The transformation of the export signatures to Prolog and the resulting Prolog

query results correctly implement the requirement for an injective homomorphism

between two export signatures. Step © in Figure 4.11 models this process.

5. The Test Set

The test set, Iq, is a subset of the query signature, Xq, and is called a signature of

constructors. A signature of constructors for an algebra A "...is a subsignature H1 . Z such

that the unique H-homomorphism Tp --+ A is surjective." [Gogu88, p.111 In other words,

every unique term defined by the algebra A can be defined using a subset of the operators in

A. For example, a signature of constructors for NAT, a sort representing the natural

numbers, would be:
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op zero: -> Nat.

op succ : Nat -> Nat.

All natural numbers can be represented with these two operators and no other

constructors are required. "Every presentation has a signature of constructors." [Gogu88,

p. 11] To derive the signature of constructors from a query specification, the process must

consider all sorts used in the specification. Each predefined sort has a predefined

signature of constructors that is added to FIq. For each user-defined sort in the query, all

operators whose range sort is one of the user-defined sorts are also included in H'q. Since

H-q is the union of signatures of constructors for all predefined sorts and all constructors of

user defined sorts, it must therefore be a complete signature of constructors for the

specification. Step () in Figure 4.11 identifies the test set construction task.

6. The 1/0 List

The 1/0 list, f 2 q, is a list of terms constructed from the export signature, Eq, and

the test set, -Iq. The initial 1/0 list is modeled after the export signature, that is, for each

operator defincl in the export signature, a term is created with the exact same structure and

added to the 1/0 list. For example, the operator

op cons: Nat List -> List.

from the export signature would take the following form in the 1/0 list:

cons(!!!Nat, !!!List)

The cons term has two unbound arguments that are expanded later with subterms

of sort Nat and List. The subterms used for expansion are modelled after operators in the

test set. The 1/0 list expansion process is explained in Section IV.F.

After full expansion, the 1/0 list consists of terms whose outermost function is a

member of the export signature and whose arguments are constructor ground terms

derived from the test set. The process is complete in that every argument of every export

operator uses every instance of the constructors for that sort. This affords the process the

ability to thoroughly exercise the semantics of each export operator. The I/O list

construction is identified at step T in Figure 4.11.

7. Reduction in the Query Domain

"OBJ3 does reduction, that is left-to-right deduction, by treating the equations in

[a presentation] P as rewrite rules." [Gogu88, p. 9] The purpose of the reduction step in the

semantic matching process is to exercise the semantics of a specification by submitting the

terms of the 1/0 list to the axioms of the specification for reduction. That is:
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Via l i< -_ 1IQ ): (qi I q 4 qi - * Eq 0qi'

The above expression states that for each term Wq in Qq, rewriting using axioms

Eq yields U'q. The symbol for rewriting, -+ *, indicates that the result is obtained with 0 or

more rewrites. The theory behind term rewriting has been well-researched [H080] and

proofs for the term rewriting process in OBJ3 can be found in the work of Goguen [Gogu88].

It suffices to say here that if one or more rewrite rules are applied to the input term Coqi to

yield output term o'qi, then the structure of term Wqi has been altered by the semantics of

the specification. The significance of the transformation is that the input and output

together model part of the behavior of the specification. This is precisely what the research

that is the focus of this dissertation hopes to capture, that is, concrete representattons of

specification semantics that can be compared to one another. The reduction process for 1/0

list terms in the query domain is illustrated in steps S and 6 of Figure 4.11.

8. Mapping Terms

Section 4 above described the process for determining a mapping, m, between the

query export signature Eq and the stored component export signature Ec. The mapping

function m is sufficient to map the export operators of the two specifications. In the course of

generating the I/O list, however, terms derived from the predefined operators (used in the

test set) as well as auxiliary constants were used to expand the terms derived from the

export signature. Therefore, the mapping function m may not be sufficient to map all

terms in the I/O list from the query domain into the stored component domain. It is

necessary, therefore, to augment the mapping to map constants as well as subterms derived

from predefined operators in the test set. The augmented mapping function is -!ff.

The purpose of this step in the overall process is to use the function h' to transform

the terms in the 1/0 list to the component domain. Hence:

Vi(1 !5 i 5 1I1 ): (iii~q(coqi) = iiiwqi) A ( 2q(O)'qi) = iifO'qi)

The mapping function Iffi maps completely each O)qi in the query domain toii€hqi

in the component domain. The function is not complete, however, with respect to O'qi, that

is, the reduced form of the input term. The result of term rewriting may be a term composed

of hidden operators for which there is no map to the stored component specification. In this

case the term is mapped "as is". When this term is compared to the component output, the

result will be most likely be false. There is a slim possibility that the stored component

uses an identical hidden operator in name and meaning, and that the comparison of the
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two output terms will yield true. The process does not make the transformation in the hope

that this occurs. On the contrary, the transformation is allowed because false results are

important in scoring, which measures the extent of semantic similarity. Steps (2) and (_)

in Figure 4.11 identify the mapping process.

9. Reduction in the Component Domain
Each input term, cOqi, from the 1/0 list that is mapped to the component domain is

reduced by t he component axioms:

Vi1 i qi E Qq 4 wqi -* Ec if(qi'

If one or more rewrites are performed on a term, then the semantics of the

specification has affected the structure of the term. The result is thus a concrete

representation of a portion of the behavior of the specification. Step (9) in Figure 4.11

identified this process.

10. Comparing Terms and Scoring

a. Comparing Terms

The final step in the query by consistency process is to compare the output

terms from the query and the candidate component specification. Herein lies the heart of

the query by consistency method. Two sets of normalized terms must be compared for

syntactic identity. The test for consistency checks for a property called behavioral

equivalence . Behavioral equivalence (a) on terms is defined as follows:

(tc r- tq) -4 (tc' == -fi(tq'))

The formula above states that two terms tc and tq are behaviorally equivalent

if their normal forms are syntactically equivalent. Behavioral equivalence for

specifications is defined as follows:

Vtq E Pq(Ht c E P A tc 9 tq) f4 Pqa Pc

The formula above states that two specifications Pq and Pc, interpreted as sets

of terms, are behaviorally equivalent if for every term in Pq there exists a behaviorally

equivalent term in PC. The query by consistency method searches for a candidate

component that is behaviorally equivalent to a given query. Under certain circumstances,

query by consistency guarantees that a stored component satisfies the requirements stated

in a query. Given that all of the I/O list terms are behaviorally equivalent (using the
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commuting diagram in Figure 4.12) and that the depth of the terms in the I/O list is

sufficient to represent the depth of the terms used in the axioms, the proof must show that

each axiom of the query is satisfied in the candidate specification. Each axiom in the

query, L = R, must be satisfied in the axioms of the candidate specification.

E
qq

_(0 O q Y q

mT(W) )--- (~,== -(0q

E c

Figure 4.12 - Commuting Diagram

Given:

* All normalized terms in the 1/0 List of a query Pq are equivalent to correspond-

ing (mapped) terms in the domain of a candidate Pc:

Vtq E Qq Htc E Pc [tc = IW(tq) A (t'q = -ff(tq)') I

Query axioms of the form L = R

* The depth of the terms in the I/O list is sufficient to represent the terms used to

define the axioms 4 .

Prove: W(L) = W(R)

1. W(L) = ii(L)' reduction of L in the candidate domain

2. ffT(L)'= W(L') by the commuting diagram

3. L' = R' reduction of L and R in the query domain

4. ff (L')= -fi (R') by substitution of R' for L'

4 The depth of the axioms in the 1/0 list is easily controlled by associating an attribute
with each placeholder to monitor expansion depth. The placeholder attribute is not
implemented in the current version of the system.
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5. fF(R')= Wi(R)' by the commuting diagram

6. Yff (R)'= li'i(R) reduction of R in the candidate domain

7. *.-ffi(L) = j(R) QED

The implications of the above proof are significant. If query by consistency

reporl - a complete equivalence with respect to the terms in the I/O list, the user has a

guarantee that the candidate component satisfies the stated requirements of the query. In

addition, the result of the proof leads to the development of a scoring heuristic for

comparing degree of behavioral equivalence.

b. Scoring

When two specifications do not have complete equivalence with respect to the

I/O list, query by consistency may be used as a heuristic method to measure the degree of

behavioral equivalence. The measure of behavioral equivalence is attained via a scoring

nmechanism that works as follows:

x := 0
Vi(1<i _ Ii ! ):1 Oqi' == -i 'qi --* true =4 x := x +1

score := x/ I 1

Simply stated, the degree to which a stored component satisfies a query's requirement is the

ratio of the number of successful term comparisons to the total number of term

comparisons. The scores are used to select the best map from a number of possible

mappings for a given candidate and to rank order candidates. Examples of the scoring

are shown in the next chapter.

J. SUMMARY

This chapter describes a method of comparing normalized algebraic specifications for

semantic similarit'y a sing a method called query by consistency (QBC). The implementa-

tion of the method consists of two executable programs, one to normalize specifications

accompanying components to be stored in the software base, and one to match or compara a

query specification with a candidate component specification.

The norma!ization process expands a specification and transforms the interface of the

specification into a set of Prolog predicate expressions. The Prolog predicate expressions

are then used to find a mapping between the export operators of the respective specifications.
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The matching process creates a test set from the query signature, and an 1/0 list from

the export signature and the test set. The terms in the 110 list are reduced in the domains of

the query and candidate specifications and the results are compared using inductionless

induction.

The fundamental premise of this dissertation is that the terms from the 1/0 list, when

reduced in the domains of the query and the candidate, provide concrete representations of

specification semantics that can be compared to one another for equivalence. From the set

of comparisons a measure of semantic similarity may be computed and used to rank order

candidate components based on how well they satisfy the semantic requirements of the

query. The last section of this chapter formally describes the query by consistency model

and offers a proof of the fundamental premise.
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V. IMPLEMENTATION AND EXAMPLES

A. INTRODUCTION

This chapter describes the implementation details of the normalization and matching

subsystems that make up the query by consistency method. The emphasis hei-e is on

showing that the data structures and processes presented are reasonable rather than

showing that they are efficient. This chapter does not offer advice on whether to use any

particular mechanisms in the implementation. There is also no comparison of the

efficiency of this method to that of other methods. The primary intent is to provide

information on the current implementation to lay a foundation for extending the research.

The body of the chapter is divided into five sections. The first section summarizes the

programming languages and systems used to implement the programs. The second

reviews the processes used for normalization and the third summarizes the processes used

for semantic matching. The fourth section describes the primary data structures used in

the implementation. The fifth section gives examples to demonstrate the capabilities of the

system. The chapter ends with a summary.

B. IMPLEMENTATION LANGUAGES

A combination of four programming languages are used in this implementation of

query by consistency: Ada, OBJ3, Lisp, and Prolog. The primary language used is Ada.

The two executable programs, for normalization and matching, are Ada executables. The

Ada compiler used is Verdix 6.0 [Verd9l]. OBJ3 is used to write specifications, while the

OBJ3 run-time system is used for expansion, term rewriting, and inductionless induction.

OBJ3 is provided by SRI International [SRI881. Since it was necessary to modify some of

the OBJ3 source code, which is written in Common Lisp, some Lisp functions comprise a

portion of the implementation. Quintus Prolog [Quin90] is used to map specifications to

one another.

C. NORMALIZATION

Figure 5.1 shows the basic structure of the normalization subsystem.The rectangular

boxes represent processes. The names in the boxes are the actual names of the processes in
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the Ada implementation except for blocks containing "OBJ3" or "Prolog", which represent

a calls to those respective systems. See the Appendix for actual Ada the source code.

Normalze

Make Set- Make-MakeSet_ Normalized-
oLOps File

OBJ3_LexCla-Mk-rog
OBJ3_Lex_10 OBJ3 Normalized- for-Stored
OBJ3_LexDfa File

GetGnerits OBJa_0xIO Operator_ Argument
OBJ3-Lex-Dfa Predicate Predicate

Figure 5.1 -Structure of the Normalization Subsystem

The normalization subsystem normalizes specifications that accompany components

destined for storage in the software base. The process is called by the software base

management system when a user wishes to store a reusable component. The process is an

Ada executable invoked with the following command line:

normalize some-object.obj

where some-object.obj is the name of the file containing the specification. Any file name

may be given but it must have the .obj extension. The process creates a file called

someobject.obj.norm that is subsequently stored away with the reusable component by the

software base management system.

The main functions of the normalization system are to expand the specification,

transform its export signature into Prolog, and create the .norm file containing the

normalized specification. The procedure MakeSet.ofOps uses a lexical analyzer 1 to

search the specification for the OBJ3 comment block containing the export operations and

creates a set containing the operator names. Make_SetofL.Ops uses a lexical analyzer to

IAII lexical analyzers and parsers used in the implementation were generated using
AFLEX Version 1.1 [Self90] and AYACC Version 1.0 [TTS881.
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process the OBJ3 specification. The procedure MakeNormalizedFile invokes OBJ3 to

expand the specification and write the details of the expansion to a file. The procedure

CleanNormalizedFile removes extraneous OBJ3 output from the file.

The procedure MakeProlog_forStored performs interface normalization. It uses

the set of export operations (from MakeSetof..Ops) and a lexical analyzer to process the

signature of the specification, creating the operator and argument predicates that represent

the export signature. These predicates and supporting information about generic

parameters are written to the .norm file.

D. MATCHING

Figure 5.2 shows the top level structure of the matching subsystem.

Match_
Candidates

orm alize _ ul M ake-. Generate..
Qury Tet.$tIO...List Output-.Termns Match

Figure 5.2 - Structure of the Matching Subsystem

Match-Candidates is an executable Ada process that is called by the software base

management system when the user queries the software base. It is invoked with the

following command line:

match-candidates myquery.obj candidates scores

The argument my-query.obj is the name of a file containing the query specification.

The argument candidates is the name of the file containing a list of the file names of

candidate component specifications. The argument scores is the name of the file to which

the process writes the score received by each candidate.

The first four subprocesses beneath MatchCandidates (in Figure 5.2) are called only

once. The last subprocess, Match, is called once for each candidate component in the file

candidates. These five subprocesses are described in the following sections.
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1. Normalize Query

The structure of the NormalizeQuery subprocess is nearly identical to the

structure of the normalization process shown in Figure 5.1, so it is not repeated here. The

differences in the processes lie in the procedures that perform interface normalization, that

is, generate the Prolog. In query normalization the Prolog created is a Prolog query rather

than a Prolog database.

2. Build Test Set

Figure 5.3 shows the high level structure of the BuildTestSet subprocess. In the

course of building a test set, the process first creates a set of the sorts used in the query

specification by scanning the .norm file with a lexical analyzer. For each predefined sort

in the set, predefined test set terms are extracted from a file and added to the test set. The

procedure GetPredefinedTerms uses a lexical analyzer to scan a file containing the

definitions of predefined term and uses a subprocedure called MakefTerm to formulate

terms from the stored definitions.

• Build Test Set

ofGtSt Predefined- Defined-
of.ort I Terms - Terms

Prelcx
PrelexIO Make-Term Make_a_Term
PrelexDfa

Figure 5.3 -Structure of the BuildTestSet Subproeess

For user-defined sorts in the set of sorts, Build-Test-Set calls MakeUser_De-

finedTerms, which scans the query's operator definition sequence for query operators

whose range sorts are among the user-defined sorts. The procedure Make-a_Term

generates a term for each appropriate operator and adds it to the test set.

3. Make O List

Figure 5.4 shows the high level structure of the Make-1OList subprocess.

Make_10_List uses the test set, the set of export operations, and the sequence of operator

77



definitions to generate the list of input terms, which comprise the input side of the 1/0 list.

MakeIOList first calls Make-Template, which creates the initial I/O list.

Make_10_List then traverses the I/O list scanning for placeholders. When the process

encounters a placeholder, it performs term expansion and then continues.

MakeIOList

Make Scan for_ Epndfr
Template Placeholder

Compare-. CopyfTerrm Checkifor- Insert-Termn
Signatures Circularity

Figure 5.4 - Structure of the MakeJOList Subprocess

Given two terms, A and B, the ExpandTerm procedure inserts the expansion

term, B, into the first placeholder position within term A, appends the new expanded term,

A', to the end of the I/O list, and deletes A from the I/O list. In performing this task, expand

term uses utilities to compare term signatures, copy terms, check for circularities, and to

insert one term into another.

4. Generate Output Terms

Figure 5.5 shows the high level structure of the GenerateOutputTerms subpro-

cess. The GenerateOutputTerms subprocess invokes an OBJ3 process to reduce the input

terms in the I/O list using the axioms in the query specification. The result of this process

is a file containing the term reductions. GenerateOutputTerms then calls

CleanOutputFile to remove extraneous OBJ3 output from the file. The TermParser

procedure then parses the terms in the file using a lexical analyzer and parser. As the

output terms are parsed, they are placed in the output side of the 1/0 list.
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Generate-
OutputTerms

Clean- Term.OBJ3 Output-File Parser

Termlex rr erm parse
Te0 TermparseGoto

Termlex_DO Termparse_Te m e -D fa S it 1
- [Shift Reduce

Figure 5.5 - Structure of the GenerateOutputTermns Subprocess

5. Match

Figure 5.6 shows the high level structure of the Match subprocess. Given an 1/0

list for the query and an operator sequence definition for the query, the Match subprocess

must determine if the query will map to a given candidate component. The ExtractProlog

procedure copies the Prolog stored . the normalized query and candidate files and creates

two new files containing the Prolog code. The Match subprocess then calls FindMaps to

find all of the mappings and Test-Maps to determine the best mapping. These are

described in more detail below.

Match

Extract_Prolog I Findlaps Test.Maps

Figure 5.6 -Structure of the Match Subprocess

a. Find Maps

Figure 5.7 shows the structure of the Find_Maps subprocess. FindMaps first

calls the Prolog system using the Prolog extracted from the normalized specification files.

Additional Prolog code used to drive the mapping process is shown in the Appendix. The

Prolog process creates an output file that is examined by a lexical analyzer to read the
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mapping information. If the candidate component is a generic object, then the maps are

checked for consistent bindings to the generic parameters. If no maps are found, the

candidate component receives a score of zero.

Prolog PrologLexIO Generic Generic
Prolog-LexDfa Consistency

Figure 5.7 - Structure of the Find-Maps Subprocess

b. Test Maps

Figure 5.8 shows the structure of the Test_Maps subprocess. Given that there

is a mapping between the query and candidate specifications, TestMaps determines the

correlation between the sorts in the two specifications and then calls PerformfTest. The

Perform-Test procedure calls Transform_Term to transform the input and output terms

in the 1/0 list from the query domain to the candidate component domain. It then creates a

file to submit to OBJ3 to reduce the transformed input term and perform inductionless

induction on the input/output pair.

Test-Maps

FindPromfs
Correltion Peorn.es

Ernsforni.BJ Clean Evaluate-
Term Outputile Results

Figure 5.8 - Structure of the Test.Maps Subprocess
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After the OBJ3 process completes, the Clean_OutputFile procedure removes

extraneous OBJ3 output from the file and the EvaluateResults procedure calculates a score

for the map. TestMaps repeats this process for each map. The highest score obtained for

any map is the overall score given to the component.

E. ABSTRACT DATA TYPES AND DATA STRUCTURES

1. Abstract Data Types

Several reusable abstract data types (ADT) are used extensively in the definition

of the predominant data structures described in the previous sections. Their structures are

shown here. An ADT called A_.String, from the Verdix library [Verd9l] bundled with the

compiler, implements variable length strings and has the following form:

package A_Strings is
type string_rec(len: natural) is

recrd
s : string(1..len);

end record;
type A-String is access string_rec;

end A_Strings;

A_String provides the standard operations one would expect from a string

package. A second ADT used frequently is Set. The Set ADT was provided by Berzins

[Berz91] and has the following form:

generic.
type t is private;
blocksize: in natural:=128;
with function eq(x,y: t) return boolean is "=";

package set_pkg is

private
type link is access set;
type elements-type is array(1..blocksize) of t;
type setis

record
size : natural:=O; --The size of the set
elements : elements-type; --The actual elements of the set
next : link:=null; --The next node in the list

end record;
end setpkg;
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The Set package is a generic package that provides the standard set operations

plus additional operations for 1/0. Another package provided by Berzins [Berz91] is the

generic Sequence package, which implements a sequence ADT. The Sequence package

provides standard sequence operations plus additional operations for I/O. It has the

following form:

generic
type t is private;
blocksize: in natural := 128;

package sequence.pkg is
type sequence is private;

private
type link is access sequence;
type elements-type is array(1 .. blocksize) of t;
type sequence is

record
length natural := 0; -- The length of the sequence.
elements elementstype; -- A prefix of the sequence.
next : link := null; -- The next node in the list.

end record;
-- Elements(1 .. min(length, blocksize)) contains data.

end sequencepkg;

2. Data Structures

The principle data structures used in the implementation are structures for

terms, operator definitions, a test set, an I/O list, and maps. A term is an inherently

recursive object so the data structure used to model it uses access types, as follows:

type Term;
type TermAccess is access Term;
Max.Arguments : constant natural := 10;
type AccessArray is array(1..MaxArguments) of TermAccess;

type Term is

OpName : AStrings.AString;
Range-Sort : AStrings.AString;
NumArgs : natural := 0;
Signature natural := 0;
Arguments : Access.Array := (1..MaxArguments => null);

end record;

From the definition one can see that a term consists of an operator name, range

sort, a certain number of arguments, and an array of arguments that are also terms. The
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signature field in the record is used to point to the operator definition in a sequence of

operator definitions that defines the structure of the term. For simplicity, the current

implementation uses a constant array size (10) for term arguments rather than a

discriminated record to implement variable length arrays.

A data structure is required to model the signature of a specification. The basis

for this is the definition for an operator, as follows:

type SortPositionPair is
record

Sort_Name : A_Strings.AString;
Position : natural;

end record;

package PairSequencePkg is new SequencePkg(t => Sort_Position_Pair);

type OpDefnType is
record

OpName : A_Strings.AString;
NumParameters : natural;
Range-Sort • A_Strings.AString;
DomainSorts : PairSequencePkg.Sequence;

end record;

package OpDefnSeqPkg is new SequencePkg(t => OpDefnType);

An operator definition consists of an operator name, a certain number of domain

parameters, a range sort, and a sequence of domain sorts that each have a sort name and a

position. A signature for a specification is a sequence of operator definitions. Note that the

reusable sequence package was used twice here, once for the sequence of domain sorts and

once for the sequence of operators.

A test set is implemented as a sequence of terms as follows 2 :

package Const_SeqPkg is new SequencePkg(t => AStrings.AString);

type Sort_IndexInfo is
record

Sort_NAme : A_Strings.AString := AStrings.to_a("!");
Start : Natural := 0;
Stop : Natural := 0;

2 1n the formal definition of query by consistency, the test set is treated as a set of operators
since that is the logical interpretation of a test set. For implementation efficiency, the test
set is treated as a list of terms , rather than translate an operator definition to a term every
time one is needed.
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Constants ConstSeqPkg.Sequence := ConstSeq.Pkg.Empty;
end record;

type SortIndexArray is array(Positive range <>) of Sort_IndexInfo;

package TermSequence-Pkg is new SequencePkg(t => TermAccess);

type Test_SetRec(Size : Natural := 10) is
record

SortIndex SortIndexArray(1..Size);
TermList TermSequence-Pkg.Sequence

TermSequence_Pkg. Empty;

end record;

type Test_Set_Def is access Test-SetRec;

The test set uses the sequence package in its definition. It also uses a variable

length array (Sort_IndexArray) as an index into the term list to indicate where the terms

associated with a particular sort begin and end. Sequences of constant identifiers are also

maintained in the SortIndexArray. During term expansion it is sometimes necessary

to add a constant to avoid a circularity. Constants must be declared before term rewriting

begins, so the Sort_Index keeps track of all constants used in test set term definitions.

Finally, the test set is implemented as an access type to avoid passing a large data structure

around as a parameter.

The next principal data structure is the I/O list, implemented as follows:

type IO_Pair_Rec;

type IOList_Def is access IO_Pair_Rec;

type JO_PairRec is
record

Input : Term-Access;
Output : TermAccess;
Result : A_Strings.AString;
Next :IOListDef;

end record;

The I/O list is a linked list of I/O pairs. An I/O pair is an input term, its

corresponding output, the sort of the result, and a pointer to the next I/O pair. Since the I/O

list is implemented as a linked list, it is only necessary to pass a pointer to the head of the

list when passing the I/O list as a parameter.
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The last of the principal data structures is the map structure, used to map one

signature to another. It is implemented as follows:

type GenericBinding is
record

GenericName : A-Strings.AString;
BoundTo . AStrings.AString;

end record;

type ArrayType is array(Positive range <>) of Generic-Binding;

subtype SizeRange is integer range 0..100;

type GenConsisRec(Size - SizeRange := 10) is
record

Bindings : Array Type(1..Size);
Length : Size_Range := 0;

end record;

type Correlation-Array is array(Positive range <>) of AStrings.AString;

type CorrelationRec(Size : SizeRange := 10) is
record

Sort_Correlation : Correlation Array(1..Size);
end record;

type CorrelationAccess is access CorrelationRec;

type Maps;

type MapAccess is access Maps;

type Maps is
record

Map : Op_DefnSeqPkg.Sequence;
GenericBindings : GenConsisRec;
Sort_Correlation : Correlation-Access;
Next : MapAccess := null;

end record;

The list of maps from a query specification to a candidate component specifica-

tion is implemented with a linked list. Each map in the linked list is implemented as a

record containing a sequence of operator definitions, a generic consistency record, an

array of sorts (sort correlation) corresponding to the query's sorts, and a pointer to the next

map.
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F. MATCHING EXAMPLES

This section provides three examples of the query by consistency method. The reason

for including the examples is to demonstrate that the system works and to reinforce the

concepts described earlier. Each of the examples presents a query specification, a

candidate component specification, the test set generated from the query, the I/O list, the

transformed terms submitted to OBJ for inductionless induction, and the results of the

process. The first two examples match against a single candidate component, whereas the

last example matches against a list of candidates.

1. List Matching Example

This first example matches a query for a list abstract data type (ADT) against a

candidate that also models a list ADT. To illustrate a base case, the two components are

identical up to renaming of the operators and sorts. There is only one possible mapping

between them. The query for the list is as follows:

***(operations nil cons car cdr)

obj LIST-OF-NAT is sort List.
protecting NAT.
subsort Nat < List.
op nil : -> List.
op cons: Nat List -> List.
op car :List ->Nat.
op cdr List-> List.
var I, J : Nat.
var L : List.
eq car(cons(I,L)) = I .
eq cdr(nil) = nil
eq cdr(cons(I,L)) = L.

endo

The specification for the stored component to which the query will be compared is

as follows:

***(operations empty insert head tail)

obj ALIST-OF-NAT is sort Alist.
protecting NAT.
subsort Nat < Alist.
op empty : -> Alist.
op insert : Nat Alist -> Alist.
op head : Alist -> Nat.
op tail : Alist -> Alist.
var I, J : Nat.
var L : Alist.
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eq head(insert(I,L)) = I
eq tail(empty) = empty.
eq tail(insert(I,L)) = L

endo

The test set terms generated from the normalized query are shown below, ordered

by sort:

Zero: 0
Nat: 0
Nat: succ(natconstl)
NzNat: 1
NzNat: succ(nznatconstl)
Boo]: true
Boo]: false
List: cdr(listconstl)
List: cons(!!, listconstl)
List: nil

The 1/0 list generated from the test set and the export signature contains 16 terms.

Table 5.1 shows the the input terms and their corresponding outputs after reduction.

TABLE 5.1- 1/0 LIST FOR LIST-OF-NAT

# Input IOutput
1 nil nil

2 cdr(cdr(listconstl)) cdr(cdr(listconstl))

3 cdr(nil) nil

4 car(cdr(listcon sti)) car(cdr(li stconstl))

5 car(cons(natconstl, listconstl)) natconstl

6 car(nil) -car(nil)

7 cdr(cons(0, listco.-istl)) listcon sti

8 cdr(cons(succ(natconstl), listconstl)) listconstl

9 consCO, cdr(listconstl)) cons(0, cdr(listconst 1))

10J cons(0, nil) cons(0, nil)

11 con s(succ(natconstl), cdr(listconstl)) con s(succ(natconst 1), cdr(listconstl))

12 cons(succ(natconstl), nil) cons(succ(natconstl), nil)
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13 consCO, cons(0, listconstl)) cons(O, cons(0, listconstl))

14cons(0, con s(succ(natcon stl1), cons(0, cons(succ(natconstl),
14 listconstl)) listconstl))

15con s(succ(natcon st 1), cons(0, con s(succ(natcon stl1), consCO,
15 listconstl)) listconstl))T cns(succ(natconstl), con s(suce(natconstl),
11Cocon s(succ(natcon st 1), listconstl)) cons(succ(natconstl), listconstl))

Given the 1/0 list, the next step is to map the query to the component. The only

mapping is:

nil -> empty
cons ->insert

car ->head

cdr ->tail

Table 5.2 shows the check for term equivalence after transformation of the 1/O

list to the component domain. Each term in the proof column has the structure prove(terml,

term2), where term 1 is the transformed input and term2 is the transformed output. The

prove function reduces termi and then compares termi and term2 using inductionless

induction (==). The result column shows the result of the check for equivalence. The score

for a sequence of checks is the ratio of the number of true results to the number tried,

multiplied by 100 and truncated.

TABLE 5.2 - EQUIVALENCE CHECKS (LIST-OF-NAT TO ALIST-OF-NAT)

# Proof LIST-OF-NAT to ALIST-OF-NAT Score: 1001 Result

1 -prove(ernpty, empty). true

2 prove(tail(tail(listconstl)), tail(tail(listconstl))) .true

3 prove(tail(ewmpty), empty) . true

4 prove(head(tail(listconstl)), head(tail(listconstl))) .true

5 prove(head(insert(natconstl, listconstl)), natconstl) .true

6 prove(head(empty), head(empty)) . true

7 prove(tail(insert(0, listconstl)), listconstl) .true

8 prove(tail(insert(succ(natconstl), Iistconstl)), Iistconstl) tu

19 1prove(insert(0, tail (1istcon stl)), insert(0, tail (Iistcon st 1))) true__
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10 prove(insert(0, empty), insert(0, empty)) . true

11 prove(insert(succ(natconstl), tail li stcon st 1)), true
insert(succ(natconstl),tail(]istconstl))) ____

12 ,prove(insert(succ(natconstl), empty), insert(succ(natconstl), empty)) true

13 prove(insert(0, insert(0, listconstl)), insert(0, insert(0, listconstl))) . rue

14prove(insert(0, insert(succ(natconstl), listconstl)), true
14 ~insert(0, insert(succ(natconstl), listcon st 1))) ____

15prove(insert(succ(natconstl), insert(0, listconstl)), true
insert(succ(natconstl), insert(O, listconstl))) .____

poe(insert(succ(natconstl), insert(succ~natconstl), listconstl)), true
16 insert(succ(natconstl), insert(succ(natconstl), listconstl))) .____

It is not surprising that the each equivalence test was true and that the score is 100.

The semantics (the axioms) of the two components are identical.

2. Set Matching Example

In this example the query is a specification for a set ADT and the component

models a set ADT. The query is a requirement for a set of natural numbers. The query

specification is as follows:

***(operations empty insert member subset equal)
obj SET-OF-NAT is

sort Set .
protecting NAT.
op empty : -> Set.
op insert: Nat Set -> Set.
op member : Nat Set -> Bool .
op subset: Set Set -> Boo] .
op equal :Set Set -> Bool.
vars S1 S2 : Set.
vars El E2 : Nat.
cq insert(E1, Si) = S1 if member(E1, 51).
eq member(E1, empty) = false.
eq member(Ei, insert(E2, Si)) = or(==(El, E2), member(El, S1)).
eq subset(e mpty, S 1) = true .
eq subset(S 1, Si1) = true.
eq subset(insert(El,Sl), S2) = and(member(E1,S2), subset(S1, S2)).
eq equal(S 1, S2) = and(subset(S 1, S2), subset(52, Si1)) .

endo

The candidate component specification is shown below. The specification is

generic. In order to perform the matching, the component specification is instantiated with

NAT (a predefined object for natural numbers). Note that arguments for the add operator
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are reversed. Also note that the definition of the equal operator is different from that in the

query. A hidden remove operation is used (it is not exported). This will affect the scoring.

***(operations empty add member subset equal union)
obj GENERIC-SET[X: TRIVI is

sort Set.
op empty : -> Set.
op add: Set Elt.X -> Set.
op member: Elt.X Set -> Boo]l.
op subset: Set Set -> Boo] .
op equal :Set Set -> Boo] .
op union :Set Set -> Set.
op remove : Elt.X Set -> Set.
vars S1 S2: Set.
vars El E2 : Elt.X.
cq add(Sl1, El1) = 5 1 if member(E1, 51) .
eq member(El, empty) = false.
eq member(El, add(Sl, E2)) = or(==(El, E2), member(El, 51)).
eq subset(empty, 5 1) = true.
eq subset(Sl1, S51) = true.
eq subset(add(Sl,El), S2) = and(member(El,S2), subset(Sl, S2)).
eq equal(empty, empty) = true.
eq equal(Sl, Si) = true.
eq equal(empty, add(Sl, El)) = false.
eq equal(add(Sl, El), empty) = false .
eq equal(add(S1,El),add(52,E2)) = and(member(El,add(S2,E2)),

equal(Sl,remove(E1,add(S2,E2)))).
eq union(S1, empty) = S1.
eq union(empty, Si1) = Si1.
eq union(add(Sl, El), S2) = if-then-else(member(El, S2),

union(Sl1, S2), union(Si1, add(52, El1))) .
eq remove(El, empty) = empty.
eq remove(El1, add(Sl1, El1)) S Si.
cq remove(Ei, add(Si, E2)) =add(remove(Ei,Si), E2) if =/=(El, E2).

endo

The following test set was generated from the normalized query specification:

Zero: 0
Nat: 0
Nat: succ(natconsti)
NzNat: 1
NzNa succ(nznatconstl)
Boo]: true
Boo]: fiIs e
Set: empty
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Set: insert(!!!, setconstl)

The 110 list generated from the test set and the export signature contains 31 terms.

Table 5.3 shows the the input terms and their corresponding outputs after reduction.

TABLE 5.3 -110 LIST FOR SET-OF-NAT

# Input JOutput
1 empty empty

2 insert(O, empty) insert(O, empty)

3 insert(succ(natconstl), empty) in sert(succ(natconstl), empty)

4 member(O, empty) false

5 member(succ(natcon sti), empty) fal se

6 1subset(empty, empty) true

7 equal(empty, empty) true

8 insert(0, insert(0, setconstl)) insert(O, setconstl)

9insert(0, insert(succ(natconstl), insert(0, insert(succ(natconstl),
setconstl)) setconstl))

10 insert(succ(natconstl), insert(O, insert(succ(natconstl), insert(0,
setconstl)) setconstl))

11 insert(succ(natconstl), isr~ucntoslstosl
insert(succ(natconstl), setconstl)) isr~ucntoslstosl

12 memberCO, insert(O, setconstl)) true

13nemberCO, insert(succ(natconst 1), member(O, setconstl)
setconstl))

14member(succ(natconstl), insert(0, mnember(succ(natconstl), setconstl)
14 setconstl))

15 ember(succ(natconstl), true
insert(succ(natconstl), setconstl))

16 subset(empty, insert(0, setconstl)) true

17subset(empty, insert(succ(natconstl), true
17 setconstl))

18 subset(insert(0, setconstl), empty) false

19subset(insert(succ(natconstl), false
seteonsti), empty) ____________________

20 equal(empty, insert(0, setconstl)) false

21equal(empty, insert(succ(natconstl), false
21 setconstl))_______________________

91



22equal(insert(O, setconstl), empty) false

23equal(insert(succ(natconstl), false
setconstl), empty) ____________________

24subset(insert(O, setconstl), insert(O, subset(setconstl, insert(O, setconstl))
setconstl)) _____________________

25subset(insert(O, setconstl), and(member(O, setconstl),
insert(succ(natconstl), setconstl)) subset(setconstl,

_________________________________ insert(succ(natcon sti), setconstl)))

26 subset(insert(succ(natconstl), and(m ember( succ(natcon6L1),
setconstl), insert(O, seteonsti)) setconstl), subset(setconstl,

_________________________________ insert(O,_setconsti)))

27subset(in sert(succ(natcon st 1), subset(setconst 1,
setconst 1), insert(succ(natconsti), insert(succ(natconstl), setconstl))
setconstl)) _____________________

28equal(insert(O, setconstl), insert(O, and(subset(setconstl, insert(O,
setconstl)) setconstl)), subset(setconstl,

___________________________________ insert(O, setconstl)))

29 equal(insert(O, setconstl), and(rnember(O, setconstl),
insert(succ(natconstl), setconstl)) and(subset(setconstl,

insert(succ(natconst 1), setconstl)),
and(member(succ(natconstl),
setconstl), subset(setconstl,

___________________________________ insert(O, setconstl)))))

30equal(insert(succ(natconst 1), and(member(succ(natconstl),
setconstl), insert(O, setconstl)) setconstl), and(subset(setconstl,

insert(O, setconstl)),
and(member(O, setconstl),
subset(setconstl,
insert(succ(natconstl),

___________________________________ setconsti)))))

31 equal(insert(succ(natconst 1), and(subset(setconstl,
ietconstl), insert(succ(natcon sti), insert(succ(natconst 1), setconstl)),
setconstl)) subset(setconstl,

in sert(succ(natcon sti), setconstl )))

Given the 110 list, the next step is to map the query to the candidate component.

There are eight possible ways to map the query to the candidate. The most obvious is:

empty ->empty

insert ->add

member ->member

subset ->Subset

equal ->equal

The reason there are eight mappings is due to the identical domain and range sorts in the

operators subset and equal. There are two possible mappings from subsetq to subsetc. For
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each of those there are two mappings from equalq to equal c , which results in four

mappings. Likewise subsetq may map to equal c and equalq to subsetc, which produces

another four.

When these maps are checked and scored, two receive a score of 87 and six

receive a score of 61. The two maps with score 87 have the subset operators mapped correctly

and the equal operators varying. The other six maps represent the other combinations,

whose positive results come primarily from the empty, add (insert), and member operators.

Table 5.4 shows the check for term equivalence for one of the maps given a score

of 87. The checks yield positive results for the first 27 pairs and negative results for thp last

4. Note that even though the axioms for the equal operator are different in both

specifications, many of the checks using equal yield positive results.

TABLE 5.4 - EQUIVALENCE CHECKS (SET-OF-NAT TO GENERIC-SET)

# Proof SET-OF-NAT to GENERIC-SET Score: 8 7 Result

1 prove(empty, empty). true

2 prove(add(empty, 0), add(empty, 0)). true

3 prove(add(empty, succ(natconstl)), add(empty, succ(natconstl))) . true

4 prove(member(0, empty), false) . true

5 prove(member(succ(natconstl), empty), false) . true

6 prove(subset(empty, empty), true). true

7 prove(equal(empty, empty), true). true

8 prove(add(add(setconstl, 0), 0), add(setconstl, 0)). true

9 prove(add(add(setconstl, succ(natconstl)), 0), add(add(setconstl, true
succ(natconstl)), 0)) .

10 prove(add(add(setconstl, 0), succ(natconstl)), add(add(setconstl, 0), true
succ(natconstl))) .

11 prove(add(add(setconstl, succ(natconstl)), succ(natconstl)), true
add(setconstl, succ(natconstl))) .

12 prove(member(O, add(setconstl, 0)), true) true

13 prove(member(0, add(setconstl,succ(natconstl))), member(0, setconstl)) . true

14 prove(member(succ(natconstl), add(setconstl, 0)), true
member(succ(natconstl), setconstl)) .

15 prove(member(succ(natconstl), add(setconstl, succ(natconstl))), true) . true

16 prove(subset(empty, add(setconstl, 0)), true). true
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17 prove(subset(empty, add(setconstl, succ(natconstl))), true) true

18 prove(subset(add(setconstl, 0), empty), false) .true

19 prove(subset(add(setconstl, succ(natconst 1)), empty), false) true

20 prove(equal(add(setconstl, 0), empty), false) .true

21 prove(equal(add(setconstl, succ(natconstl)), empty), false) true

Sprove(equal(empty, add(setconstl, 0)), false) true

23 prove~equal~empty, add(setconstl, succ(natconstl))), false) true

24 prove(subset(add(setconstl, 0), add(setconstl, 0)), subset(setconstl, true
add(setconstl, 0)))

25 prove(subset(add(setconstl, 0), add(setconstl, succ(natconstl))), tu
and(member(O, setconstl), subset(setconstl, add(setconstl,
succ(natconstl))))).

26 prove(subset(add(setconstl, succ(natconstl)), add(setconstl, 0)), true
and(member(succ(natcon sti), setconst 1), subset(setconst 1,
add(setconstl, 0))

27 prove(subs 3t(add(setconstl, succ(natconstl)), add(setconstl, true
succ(natconstl))),subset(setconstl, add(setconstl, succ(natconstl))))

28 prove(equal(add(setconstl, 0), add(setconstl, 0)), and(subset(setconst 1, false
add(setcon sti, 0)), subseL(setconstl, add(setconstl, 0)))) _____

29 prove(equal(add(setconstl, succ(natconstl)), add(setconstl, 0)), false
and(member(O, setconstl), and(subset(setconstl, add(setconstl,
succ(natconstl))), and(member(succ(natconstl), setconstl),
subset(setconsti, add(setconstl, 0D)))

30 prove(equal(add(setconst 1, 0), add(setconst 1, succ(natconstl))), false
and(member(succ(natconst 1), setconstl), and(subset(setconstl,
add(setconstl, 0)), and(member(0, setconstl), subset(setconstl,
add(setconstl, succ(natconstl))))))).

31 1prove(equal(add(setconstl, succ(natconst 1)), add(setconst 1, fal se
succ(natconstl))), and(subset(setconstl, add(setconst 1,
succ(natconstl))),subset(setcon sti ,add(setconstl,succ(natconstl))))) ____

3. Stack Matching Example

The final example matches a query for a stack of integers to three generic object

specifications: a generic stack, a generic list, and a generic first-in-first-out queue.

These three have been chosen because the query will map to each of them, but their

behaviors are different. The query specification, which is a simple request for four stack

operators, is:

***(operations empty push pop top)
obj STACK-OF-INT is sort Stack.

protecting INT .
op empty : >Stack .
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op push : Int Stack -> Stack.
op top : Stack -> Int.
op pop : Stack -> Stack.
var S : Stack.
var X: Int.
eq top(pushkX, S)) = X.
eq pop(push(X, S)) = S.

endo

The specification for the generic stack (below) is similar to the query but provides

more functionality.

***(operations create isempty push pop top size)

obj GENERIC-STACK[X:: TRIV] is sort Stack.
protecting NAT.
op create : -> Stack.
op isempty : Stack -> Bool.
op push : Elt.X Stack -> Stack.
op top : Stack -> Elt.X.
op pop : Stack -> Stack.
op underflow -> Stack.
op size : Stack -> Nat..
var S : Stack.
var X: Elt.X.
eq size(create) = 0.
eq size(push(X, S)) = sum(l, size(S))
eq top(push(X, S)) = X.
eq pop(push(X, S)) = S.
eq pop(create) = underfiow.
eq isempty(S) = if-then-else(==(S, create), true, false).

endo

The specification for the generic list is:

***(operations nil cons car cdr length contains)

obj GENERIC-LIST[X :: TRIVI is sort List.
protecting NAT.
subsort Elt < List.
op nil : -> List.
op cons : Elt List -> List.
op car : List -> Elt.
op cdr : List -> List.
op length : List -> Nat.
op contains : List Elt -> Bool.
var 1, J : Elt.
var L : List.
eq length(nil) = 0.

95



eq length(cons(I, L)) =sum(1, length(L))
eq car(nil) = nil.
eq car(cons(J,L)) =I

eq cdr(nil) = nil
eq cdr(cons(I,L)) =L

eq contains(nil, 1) = false
eq contains(cons(J, L), I) =if-th en -else(= =(J, U), true, contains(L, )

en do

Finally, the specification for the generic queue is:

***(operations empty isempty add pop front length)
obj GENERIC-FIFQ-QUEUE[X: TRIVI is sort Queue.

protecting NAT.
op empty : -> Queue.
op isempty: Queue -> Bool.
op, add : Elt.X Queue -> Qaeue.
op front : Queue -> Elt.X.
op pop: Queue -> Queue.
op length : Queue -> Nat.
var S :Queue.
var X: Elt.X .
eq length(empty) =0.
eq length(add(X, S)) = sum(length(S), 1) .
eq front(add(X, S)) = if-then-else(==(S, empty), X, front(S)).
eq pop(add(X, S)) =if-then-else(==(S, empty), empty, add(X, pop(S)))
eq isempty(S) = if-then-else(==(S, empty), true, false).

endo

The following test set was generated from the normalized query specification for

the stack of integers:

Zero: 0
Nat: 0
Nat: succ(natconstl)
NzNat: 1
NzNat: succ(nznatconstl)
Boo]: true
Bool: false
Int: 0
Int: succ(intconstl)
Int: pred(intconstl)
Nzlnt: succ(nzintconstl)
Nzlnt: pred(nzintconstl)
Stack: pop(stackconstl)
Stack: push(!!!, stackconstl)
Stack: empty
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The 1/O list generated from the test set and the export signature contains 24 terms.

Table 5.5 shows the the input terms and their corresponding outputs after reduction.

TABLE 5.5- 1/0 LIST FOR STACK-OF-INT

# Ilnput Output

1 empty empty

2 pop(pop(stackconstl)) pop(pop(stackconstl))

3 pop(empty) pop(empty)

4 top(pop(stackconstl)) top(pop(stackconstl))

5 top(push(intconstl stackcon st 1)) intconstl

6 top(empty) top( empty)

7 pop(push(O, stackconstl)) stackconstl

8 pop(push(succ(intconstl), stackconstl)) stackconstl

9 pop(push(pred(intconstl), stackconstl)) stackconstl

10 push(0, pop(stackconstl)) push(0, pop(stackconstl))

11 push(Q, empty) push(O, empty)

12 push(succ(intconstl), pop(stackconstl)) push(sum( 1, intconstl),
pop(stackeonstl))

13 push (succ(in tcon stl1), empty) push(sum(1, intconstl), empty)

14 push (pre d(in tcon st 1), pop(stackconst 1)) push(sum(intconstl, -1),
_________________________________ pop(stackconstl))

15 push(pred(intconstl), empty) push(sum(intconstl, -1), empty)

16 push(0, push(0, stackconstl)) push(O, pushC0, stackconstl))

17 push(0, push(succ(intconstl), push(0, push(sum(l, intconstl),
stackconstl)) stackconstl))

18pushC0, push(pred(intconstl), push(O, push (sum(inteonstl, -1),
stackconstl)) stackconstl))

19push(succ(intconstl), push(O, push(sum(1, intconstl), push(0,
'9 stackconstl)) stackconstl))

20 push (succ(i ntcon st 1), push(sum( 1, intconstl), push~sum( 1,
push (succ(intco~ist ), stackcon sti)) intconstl), stackconstl))

21 push(succ(intcon sti), push(sum( 1, intconstl),
push (pred (in tcon stl1), stackconstl)) push (sum(intcon st, 1, -1),

_________________________________ stackconstl))
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22push (pred(intconstl), push(O, push(sum(intcon sti, -1). push(O,
stackconstl)) stackconstl))

23 push(pred(intconstl), push (sum(intcon stl, -1), push(sum(1,
p~ush (succ(intconst 1), stackconstl)) intconstl), stackcon sti))

Spush (pred(intcon stJ.), push(sum(intconstl, -1),
push(pred(intconstl), stackconstl)) push(sum(intrinstl, -1),

_________________________________ stackcensti))

Given the 110 list, the next step is to consider the mappings and the checks for

equivalence in each of the three candidate specifications. The query maps to the generic

stack in one way:

POP -> pop
top -top
push -push
empty ->create

Table 5.6 shows the comparison of terms from the query and the generic stack.

Check #3 had a false result because the candidate specification reduced pop(create) to

underfiow, whereas the query did not.

TABLE 5.6 - EQUIVALENCE CHECKS (STACK-OF-INT TO GENERIC-STACK)

# Proof STACK-OF-INT to GENERIC-STACK Score: 95J Result

1 prove(create, create) . true

2 prove(pop(pop(stackconstl)), pop(pop(stackcon sti))) .true

3 prove(pop(create), pop(create)) . false

4 prove(top(pop(stackconst 1)), top(pop(stackconst 1))) .true

5 prove(top(push(intconstl, stackconstl)), intconsti) .true

6 prove(top(create), top(create)) . true

7 prove(pop(push(O, stackconstl)), stackconstl) .true

8 prove(pop(push(succ(intconstl), stackconst 1)), stackconst 1) .true

9 prove(pop(push~pred(intconstl), stackconstl)), stackconstl) .true

10 prove(push(0, pop(stackconstl)), push(0, pop(stackconstl))). true

11 prove(push(0, create), push(0, create)) . true

12prove(push(succ(intcon sti), pop(stackcon st 1)), push(sum( 1, intcon sti), true
pop(stackconstl)))
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13prove(push(succ(intconstl), create), push(sum(l, intconstl), create)) . true

14prove(push(pred(intconstl), pop(stackconstl)), push(sum(intcon sti, -1), true
14 pop(stackconstl))).

15 .prove(push(pred(intconstl), create), push(sum(intconstl, -1), create)) true

16 prove(push(O, push(O, stackconstl)), push(O, push(O, stackconstl))) . true

17prove(push(O, push(succ(intconstl), stackconstl)), push(O, push(sum( 1, true
17 intconstl), stackconstl))).

18prove(push(O, push(pred(intconstl), stackconstl)), push(O, true
I8 push(sum(intconstl, -1), stackconstl)))

19prove(push(succ(intconstl), push(O, stackconstl)), push(sum( 1, intconstl), true
push(O, stackconstl))).

20prove(push(succ(intconstl), push (succ(intcon stl1), stackconstl)), true
push(sum(l, intconstl), push(sum(l, intconstl), stackconstl)))

21prove(push(succ(intconstl), push (pred(intcon stl1), stackconstl)), true
21 push(sum(1, intconstl), push(sum(intconstl, -1), stackconstl)))
22prove(push(pred(intconstl), push(O, stackconstl)), push (sum(intcon stl1, - true

1), push(O, stackconstl))).
prove(push(pred(intconstl), push(succ(intconst 1), stackconstl)), true
23 push(sum(intconstl, -1), push (sum(1, intconstl), stackconstl))) ____

24prove(push(pred(intcon sti), push(pred(intconst 1), stackconst 1)), true
push(sum(intconstl, -1), push(sum(intconstl, -1), stackconstl))) ____

The stack query maps to the generic list in only one way:

POP - cdr
top ->car

push ->cons

empty ->nil

Table 5.7 shows the term equivalence checks for the query and the generic list.

Checks #3 and 6 are false because the candidate reduces cdr(nil) and car(nil) to nil

whereas the query does not.

TABLE 5.7 - EQUIVALENCE CHECKS (STACK-OF-TIT TO GENERIC-LIST)

# Proof STACK-OF-INT to GENERIC-LIST Score: 91 Result

I prove(nil, nil) .true

2 prove(cdr(edr(stackconstl )), cdr(cdr(stackeonstl))) .true

3 prove(cdr(nil), cdr(nil)) . false

4 1prove(car(cdr(stackconstl)), car(cdr(stackconstl))) .true--



5 prove(car(cons(intconstl, stackconstl)), intconstl) true

6 prove(car(nil), car(nil)) .false

7 prove(cdr(cons(0, stackconstl)), stackconstl) true

8 prove(cdr(cons(succ(intconstl), stackeon sti)), stackconstl) true

9 prove(cdr(con s(pred(intconstl), stackconstl)), stackconstl) true

10 prove(cons(O, cdr(stackconstl)), cons(0, cdr(stackconstl))) true

11 prove(cons(0, nil), cons(O, nil)) .true

12prove(cons(succ(intconstl), cdr(stackconstl)), cons(sun( 1, intconstl), true
cdr(stackconstl)))

,3 prove(cons(succ(intconstl), nil), cons(sum(1, intconstl), nil)) true

14prove(cons(pred(intconstl), cdr(stackconst 1)), cons(sum(intconstl, -1), true
14 cdr(stackconstl))).

15 prove(cons(pred(intconstl), nil), cons(sum(intconstl, -1), nil)) true

16 prove(cons(0, consCO, stackconstl)), cons(0, consCO, stackconstl))) true

17prove(cons(0, con s(succ(intconstl1) stackcon st 1)), consCO, cons(sum( 1, true
17 intconstl), stackconstl))).
18prove(cons(0, cons(pred(in tconsti), stackconstl)), cons(0, true

18 cons(surn(intconstl, -1), stackconstl))).

19prove(cons(succ(intcon st 1), cons(0, stackconstl)), cons(sum( 1, intconstl), true
cons(0, stackconstl))).

20prove(cons(succ(intconst 1), cons(succ(in tconstl), stackconstl)), true
cons(sum(1, intconstl), cons(sum(1, intconstl), stackconstl)))

21prove(cons(succ(intconstl), con s(pred(intcon stl1), stackconstl)), true
21 cons(sum(1, intconstl), cons(sum(intconstl, -1), stackconstl))) ____

22prove(cons(pred(intconst 1), cons(0, stackconstl)), cons(sum(intconstl, - true
1), cons(O, stackconstl))).

23prove(cons(pred(intconstl), cons(succ(intconstl), stackconstl)), true
cons(sum(intconstl, -1), cons(sum(l, intconstl), stackconstl))) ____

24prove(cons(pred(intconstl), con s(pred(intcon st 1), stackconstl)), true
cons(sum(intconstl, -1), cons(sum(intconstl, -1), stackconstl))) ____

Finally, the query maps to the first-in-first-out-queue in only one way:

POP ->POP

top ->front

push ->add

empty ->empty

Table 5.8 shows the term equivalence checks for the query and the generic queue.

Check 05 is false because the front operator in the candidate does not have the same
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behavior as the top operator in the query. Checks #7, 8, and 9 are false because of the

behavioral differences in the pop operators.

TABLE 5.8 - EQUIVALENCE CHECKS (STACK-OF-INT TO GENERIC-FIFO-QUEUE)

#Proof STACK-OF-INT to GENERIC-FIFO-QUEUE Score: 831 Result

1 prove~empty, empty) . true

2 prove(pop(pop(stackconstl)), pop(pop(stackconstl))) .true

3 prove(pop(empty), pop(empty)) . true

4 prove(front(pop(stackconstl)), front(pop( stackconstl))) .true

5 prove(front(add(intconstl, stackconstl)), intconstl) .false

6 prove(front(empty), front(empty)) .__true

7 prove(pop(add(0, stackconstl)), stackconstl) .false

8 prove(pop(add(succ(intconstl), stackconstl)), stackconstl) .false

9 prove(pop(add(pred(intconst 1), stackconstl)), stackconstl) .false

10 prove(add(0, pop(stackcoristl)), add(0, pop(stackconst 1))) .true

11 prove~add(0, empty), add(0, empty)) . true

12prove(add(succ(intconstl), pop(stackconstl)), add(sum( 1, intconstl), true
9 pop(stackconstl))).

13 prove(add(succ(intconstl), empty), add(sum(1, intconsti), empty)) . true

14prove(add(pred(intconstl), pop(stackconstl)), add(sum(intconstl, -1), true
14 pop(stackconstl))).

15 prove(add(pred(intconstl), empty), add(sum(intconstl, -1), empty)) . true

16 prove(add(0, add(0, stackconstl)), add(0, add(0, stackconstl))) . true

17prove(add(0, add(succ(intconst 1), stackconstl)), add(0, add(sum( 1, true
17 intconstl), stackconstl))).

18prove(add(0, add(pred(intconst 1), stackconstl)), add(0, true
18 add(sum(intconstl, -1), stackconstl)))

19prove(add(succ(intconstl), add(0, stackconstl)), add(sum( 1, intconstl), true
add(0, stackconstl))).

20prove(add(succ(intconstl), add(succ(inteonstl), stackconst 1)), true
add(sum(1, intconstl), add(sum(1, intconstl), stackconstl))) ____

21prove(add(succ(intconstl), add(pred(inteonstl), stackconst 1)), true
21 add(sum(1, intconsti), add(sum(intconstl, -1), stackconstl))) ____

22prove(add(pred(intconstl), add(O, stackconstl)), add(sum(intconstl, -1), true
add(0,stackconstl))).

23prove(add(pred(intconstl), add(succ(intconstl), stackconstl)), true
add(sum(intconstl, -1), add(sum(l, intconstl), stackconstl))) ____
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2 1 prove(add(pred(intconstl), add(pred(intconstl), stackconstl)), 1 trueI 24 add(sum(intconstl, -1), add(sum(intconstl, -1), stackconstl))) I

The scores obtained by the check for equivalence are 95 for the generic stack, 91

for the generic list, and 83 for the generic queue. These scores all appear high, as if any of

the components would satisfy the requirement. It is important to remember, however, that

the scoring is relative, not absolute. A high score does not necessarily mean a candidate is

acceptable. The scores are all close, but in the final analysis, the rank order is as one

would expect. The generic stack is the most appropriate candidate to meet the requirement

expressed in the query. The generic list could be used to simulate a stack, but is not as

desirable. Finally, the queue is probably not acceptable as a substitute for a stack.

G. SUMMARY

This chapter describes the implementation details of the normalization and matching

subsystems that make up the query by consistency method and uses examples to reinforce

the concepts described in Chapters III and IV. As mentioned in the introduction, the

implementation is meant to be a proof of concept. The query by consistency method has

limitations, which are described in Section VI.G. There are also inefficiencies in the data

structures and algorithms, which could be improved to enhance system performance.

Section VII.C describes suggested modifications to enhance performance and Section

VII.D examines suggested extensions to this research.
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VI. EVALUATION OF THE SOFTWARE RETRIEVAL MODEL

A. INTRODUCTION

This chapter evaluates the software retrieval model, first from a broad perspective and

then more specifically using Salton and McGill's [SM83] six critical evaluation criteria

for examining information retrieval systems: recall, precision, effort, time, presentation,

and coverage. This chapter also addresses the limitations of the query by consistency

method.

B. A FRAMEWORK FOR SOFTWARE RETRIEVAL SYSTEM EVALUATION

A general framework for the evaluation of software retrieval systems is composed of

three components. The first is a set of all possible candidate software retrieval systems.

The second is a cost-performance valuation function and the third is the integration of the

first two components into a choice of the optimal cost-performance software retrieval

system. [Jone9l]

The first component, the set of all possible candidate software retrieval systems, is

focused on the physical and technological feasibility of software retrieval. This

dissertation has concentrated on just this by introducing a retrieval system called query by

consistency. The physical and technical feasibility has been shown. The remaining task

is to choose measures of performance and cost for the system. Sections C through G of this

chapter are devoted to this task. For the purpose of this description of a general framework,

it is assumed that the set of all possible technologically feasible software retrieval systems

form a convex cost-performance space. Figure 6.1 shows a continuous curve representing

the boundary of the set of all possible technologically feasible software retrieval systems.

The second component, the cost-performance valuation function, is focused on the

overall valuation of performance and cost of a software retrieval system. The valuation

function represents a complete, transitive, non-satiated ordering of the space of all possible

measures of performance and cost. The ordering is labelled "at least as cost performance

as". Implicitly the valuation function contains the pairwise tradeoff of each measure of

performance and cost. Thus, the cost-performance valuation function trades off

performance with performance and each measure of performance with cost. The
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candidate software component retrieval system that is ordered the "highest", will be the one

with the largest valuation function value, and should be the most desirable system.

Technologically
Feasible gi
Region

Measure of Cost

Figure 6.1 -Cost-Performance Curve

Assuming that increasing performance means increasing value, increasing cost

means decreasing value, and assuming a convex space, a two dimensional picture of a

valuation function (one measure of performance and one measure of cost) can be

constructed. This is shown in Figure 6.2.

Increasing
Cost-Performance

C 
Value

Iso-Cost-
Performance Curve

Measure of Cost

Figure 6.2 - Iso-Cost-Performance Curves

Each member of the family of curves shown is called an iso-cost-performance curve.

The slope of the iso-cost-performance curve measures the tradeoff of performance and cost
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at that point. The convexity assumption is interpreted as the willingness at low cost levels

to trade off a relatively large increase in cost to gain a relatively small increase in

performance. At high cost levels, the stated tradeoff is a small increase in cost to gain a

relatively large increase in performance.

The third component in the general framework is the integration of the first two

components into a choice of the optimal system. From the set of technologically feasible

software component retrieval systems, the optimal system is the system that, by the

valuation function, is the most valued. Figure 6.3 illustrates this by superimposing

Figures 6.1 and 6.2.

Optimal System

Measure of Cost

Figure 6.3 - Isolating the Optimal System

At this juncture, the field of reusable software component retrieval has not produced a

large number of technologically feasible systems. When only discrete alternative

systems are available, a complete valuation may not be needed. A simple application of

vector dominance, appropriately adapted to the cost measure, may identify the optimal

system. The following sections describe measures of performance that can be used for

system evaluation and how query by consistency measures up to each.

C. RECALL AND PRECISION

This section examines CAPS' syntactic and semantic retrieval mechanisms with

respect to recall and precision after presenting some background information.

1. Background

Recall and precision, which are used as measures of performance for

information retrieval systems, were introduced in Chapter II. Recall is the ratio of the

105



number of relevant items retrieved to the total number of relevant items in the database.

Precision is the ratio of the number of relevant items retrieved to the number of items

retrieved. "Recall measures the ability of the system to retrieve useful documents, while

precision conversely measures the ability to reject useless materials." [SM83 : p. 160] High

recall and high precision are desirable. The primary factors affecting the recall and

precision measures are indexing and relevance.

a. Indexing

Indexing refers to the representation of the object sought, such as a list of

keywords or a formal specification. The research by Salton and McGill [SM83 focuses on

the use of keywords. Query by consistency requires formal specifications. An indexor is

a person who formulates the representation for the purpose of storing or retrieving an

object. Depending on the indexing method chosen, users may have some control over the

values obtained for recall and precision. By providing a broad, general query, users can

expect high recall and relatively low precision. Conversely, a detailed, specific query

leads to lower recall and increased precision.

For example, in a keyword system, a query with just one or two keywords will

usually provide high recall and low precision, whereas an increase in the number of

keywords lowers recall but improves precision. The same effect can be achieved with

formal specifications. A specification that defines only a few simple operations will map

syntactically to many more candidate specifications than would a specification with many

operators.

In many instances, a trained and experienced indexor makes the difference

between good values and poor values for the recall and precision metrics. Meaningful

measurements rely on indexor consistency and experience. For the purpose of evaluating

the software base retrieval mechanisms, indexor consistency and experience are

assumed.

b. Relevance

Of the six criteria listed in Section A, recall and precision are the most

difficult to assess because of the ambiguity of relevance. According to Salton and McGill,

relevance may be either objective or subjective.

Objective relevance considers relevance as a logical property between a pair

of items. In other words, "...relevance is the correspondence in context between an

information requirement statement (a query) and an article (a document), that is, the

extent to which the article covers the material that is appropriate to the requirement
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statement." [SM83 : p. 163] It does not consider the state of knowledge of the user submitting

the query. Subjective relevance considers not only the items being compared, but also the

knowledge of the user submitting the query. For example, a user may already be aware of

a document that was retrieved. From his perspective, that document is not relevant.

In evaluating the recall and precision characteristics of the query by

consistency method, only objective relevance is considered, that is, the user's state of

knowledge at the time of the query is not considered. Therefore, any component that meets

the user's requirements is considered relevant.

Another factor with respect to relevance is the subjective nature of deciding

when a particular item is relevant, that is, users will vary in their opinion about whether

an item in the database is relevant to a query. Salton and McGill report that if objective

system evaluation is the goal, then relevance assessments should be available from some

external and impartial source.

2. Syntax and Semantics

Starting with the entire collection of components, syntactic search quickly

identifies a set of components that have PSDL interfaces consistent with the query.

Semantic search begins by trying to map the query's OBJ3 export signature to the export

signature of each candidate in the set, and then uses the I/O list and axioms to perform

reductions and compare normalized terms. If there is no morphism between the query and

a candidate, the candidate receives a score of 0, otherwise the score is the ratio of the

number of positive term equivalence checks over the total tried. Using these scores, the

candidates are rank ordered based on their semantics. This step in the process is not

consistent with typical retrieval systems. Low-scoring candidates are not discarded, but

retained and placed at the bottom of the list. This complicates the use of recall and

precision metrics to compare this system's performance against others. It is desirable to

have the recall and precision measurements that are consistent with the recall and

precision measurements of other systems. Therefore, it is best to remain as faithful as

possible to the model provided by Salton and McGill. The next two sections describe the

processes for determining recall and precision measurements in the software base

reusable component retrieval system.

a. Recall is Linked to Syntactic Search

For recall, the method recommended by Salton and McGill is suitable. The

value for recall may be computed solely on the basis of syntactic search since the semantic

search mechanism does not delete components from the set. In other words, since the size
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of the set does not change, the process that created the set is responsible for the metrics

derived from it. High values for recall are expected from the syntactic search mechanism.

Assuming some uniformity in the way the designers fashion components and query for

them, comparing interfaces is a promising way to locate potential reuse candidates [RT89].

Recall is not perfect however. There are many ways to implement a problem and other

components with slightly different interfaces may still be relevant. Experience with

indexing (query formulation) is also a factor that will lead to improved recall.

b. Precision Requires a New Method

Since semantic search does not reduce the set of components, the measure of

precision proposed by Salton and McGill penalizes this method of search. What is required

is a metric that scores standard metric but also takes into account the ranking of the

components. The standard measure for precision (P) is P= R/Q, where R is the number of

relevant component retrieved and Q is the total number of components retrieved. Seen in a

different way, every component in the set Q is given a score. A relevant component

receives a score of 1 and a non-relevant component a score of 0. The scores are totalled to

compute R, the number of relevant components in Q. In other words:

n
R = qi such that qi = 1 if relevant and qi = 0 if not relevant

i=l1

A method is proposed to compute a metric, called ranking precision, where

each component in Q receives a score between 1 and 0 iri 'lusive, based on its ranking.

Given an ordered list of n components1 , with the highest ranked components coming first

in the list, each component receives an initial score (qi) of 1 if it is relevant and 0 if it is not

relevant. Then, based on its ranking, the initial score for each component is altered as

follows.

If qi is relevant and there are m non-relevant cormponents ahead of it in the

ranking, then qi = 1 - m/n, that is, qi is penalized for being ranked below non-
relevant components.

1 Components are ranked in descending order by score. Two or more components with the
same score are given the same rank, so that they are neither rewarded nor penalized for
their rank relative to one another.

108



If qi is not relevant and there are m relevant components ahead of it in the
ranking, then qi = 1 + m/n, that is, qi is rewarded for being ranked below
relevant components.

Consider some examples. Given a list of components that are all relevant, the

standard precision is 1. Since there are no non-relevant components, the ranking

precision is also 1. For a list containing all non-relevant components, the standard

precision is 0. Since there are no relevant components, the ranking precision is also 0.

These are the extreme cases, which show that the scores for ranking precision lie within the

bounds of the scores for standard precision. Table 6.1 shows a third example, where a list

of eight components in rank order are scored for ranking precision.

TABLE 6.1 - COMPUTING RANKING PRECISION

Rank Relevance Penalty / Reward Score

1 1 0/8 = 0 1.0

2 1 0/8 = 0 1.0

3 0 2/8 = .25 .25

4 0 2/8 = .25 .25

5 1 -2/8 = -.25 .75

6 1 -2/8 = -.25 .75

7 0 4/8 = .5 .5

8 0 4/8 = .5 .5

Total: R= 5.0

Since four of the components are relevant and four are not, the standard

precision is .50. Ranking precision is 5/8 or .625. In this case the ranking precision is

higher than the standard precision. The best ranking precision score possible is .75, when

the four relevant components are ranked first through fourth. The worst ranking

precision is .25, which occurs when the four relevant components are ranked fifth through

eighth. There are actually 70 possible rankings since the mathematical combination of 8

items taken 4 at a time is 70. The average of the ranking precision values for the 70

possible combinations is equal to the standard precision. Therefore, if the components

were ranked randomly, then on average, they would have the same ranking precision as
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standard precision, which is the desired effect. In practice, however, the ranking process

should improve the precision value, so one would expect the system to have higher

precision, which is the purpose of having semantic matching.

Some may argue that the ranking precision should never be lower than the

standard precision. This is a more liberal view of scoring (calling the above technique

conservative). To achieve liberal ranking precision, simply ignore the rule that penalizes

poor ranking of relevant components. Since the scores for relevant components will

always be 1, the value for R can never be less than it is using standard precision and hence,

the value for liberal ranking precision will always be greater than or equal to standard

precision. The argument in favor liberal ranking precision is a valid one. Aftcr all, if

there were no semantic matching mechanism at all, the precision would be the same as

standard precision.

The choice to use conservative or liberal ranking precision is left to those who

will populate the software base and exercise the retrieval mechanisms. A fundamental

limitation of both ranking precision techniques is that the precision can never be perfect (1)

unless all components retrieved by the syntactic retrieval mechanism are relevant. It is

my recommendation that additional heuristics be used during semantic matching to

further reduce the set of candidates (some are suggested in Chapter VII). If this is

accomplished, then the standard precision metric will be adequate.

D. EFFORT

Effort is the physical or intellectual labor required to formulate queries, conduct the

search, and screen the output. Formal specifications are difficult for most people to write.

Thus the amount of intellectual labor required to write specifications as queries could be

excessive. In the context of prototyping in CAPS or in the development of safety critical

systems, however, the specifications are needed for other reasons, so there is no additional

effort associated with using specifications for retrieving reusable components. Also,

automated tools such as syntax directed editors that help the designer formulate

specifications, can alleviate much of the burden by performing formatting, structuring,

and even type checking [AFM90]. This allows the designer to focus on the semantics of the

specification, rather than the syntax. It also improves the designer's productivity.

Little effort is required to di.'play the identified candidate components. The user

interface designed by McDowell [McDo91] presents the user with a scrollable list of

candidate component file names. The user merely selects a file name from the list to view
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the corresponding specification or source code. Since the files in the list were referenced in

the search phase, their addresses are already known, so there is minimal computation

required to retrieve file data.

E. TIME

This metric measures system response time, that is, the time elapsed between the

submission of the query to the system and the presentation of system responses. System

response time is closely related to the discussion of effort in Section C. The time required to

conduct the search can be broken down into two parts: syntactic retrieval and semantic

retrieval. Syntactic retrieval is described in atail in the research by McDowell [McDo91].

McDowell designed the syntactic retrieval system to search efficiently by usi,.g a series of

indexes or dictionaries, which the object-oriented database implements with B-trees

[Onto91]. A B-tree is a data structure known to provide good search efficiency [AHU83].

The current "bottleneck" in search efficiency is not syntactic search, but the semantic

search mechanism. Since the software base currently contains only a few components, no

meaningful measurements can be obtained. Performing measurements on a well

populated software base is an area of future research. Section VII.C.5 describes techniques

that can improve the performance of the current implementation.

F. PRESENTATION

Presentation is the form of the output displayed to the user. The CAPS environment is

an interactive, windowing environment with keyboard and mouse interfaces. The

software base interface is consistent with the overall CAPS interface. A designer composes

a specification in a text editor window and then saves the specification to a file. When the

designer queries the system, the interface displays the query results as a scrollable list of

file names. This list of file names is an ordered list of candidates that satisfy the query.

The designer may then select one of the candidate file names with the mouse and the

system will open a scrollable window to display the contents of the file. The designer may
"cut and paste" any or all of the file into his own application. The ability to automatically

integrate a retrieved component into a design is not yet available and is an area of future

study.
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G. COVERAGE

Coverage is the extent to which relevant items are included in the database. Since the

software base currently contains only a few components, coverage is low. As the software

base grows coverage will improve. In the future, when software base coverage is assessed,

it will be meaningful to make the evaluation based on domains or particular application

areas. The software base retrieval mechanisms are designed to search for any component,

regardless of its domain, but as projects are designed and components are added to the

software base, some application areas will have more coverage. The application domains

that will most likely receive attention are fundamental data structures, mathematical

functions, command and control software, and autonomous underwater vehicle control

software.

H. QBC LIMITATIONS

There are limitations to the query by consistency method. One is the problem of

mathematical precision. At the lowest level of rewriting in OBJ3, Lisp is used to compute

the answers to mathematical functions. When the normal forms of terms are compared,

the answers must be exact or the terms are not equivalent. Consider the case when a user

defines the constant x as 3.141 and the stored component uses the system defined a, which

has much greater precision. The answers for computations in each domain will be

different. This problem could be alleviated by modifying the Lisp code in OBJ3 which

checks term equivalence, relaxing the constraints on numeric precision.

Another limitation with QBC is in the area of subtype mapping. For example, if a

designer queries for a stack of natural numbers, the query would map to a generic stack,

but would not map to a stack of integers. Since natural is a subtype of integer, one might

expect a mapping. The limitation exists because the mapping subsystem treats predefined

sorts as constants. A possible solution is to treat them as variables and then perform a

check (similar to the check for generic consistency) after the mappings are determined.

This check would ensure that the mapping is consistent and that the query sort is the same

as or a subtype of the candidate sort.

A third limitation is matching what I call deep semantics. Deep semantics are

attributed to functions whose behavior becomes apparent only after a significant amount of

processing has taken place. Sorting a list is an example of deep semantics. In query by

consistency, the term submitted for sorting would consist mainly of symbolic constants

which cannot be meaningfully compared. Consequently, the rewriting cannot go very far,
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possibly only to the point of comparing the first two elements of the list. In many cases this

will be adequate to compare semantics, but not the true semantics of this type of function.

One approach to alleviating this problem is to use a longer I/O list, that is, expand terms to a

deeper level before the expansion is cut off by adding symbolic constants. Another solution

to this problem is to query using examples, wherein the designer provides axioms which

are concrete examples of the processing behavior required. Section VII.D.7 describes this

technique.

I. SUMMARY

This chapter takes a broad look at evaluating component retrieval systems by showing

how measures of performance and cost can be combined to select an optimal retrieval

system. The objective of the research presented in this dissertation is to expand the

technologically feasible region of component retrieval, thus making improvements in

specific measures of performance, especially precision and recall.

This chapter examines the software base reusable component retrieval mechanism

with respect to six evaluation criteria suggested by Salton and McGill [SM83].

Measurements of precision and recall are the standard for comparing information

retrieval systems. Recall performance is tied to syntactic search and precision to

semantic search. Ranking precision is introduced as an alternative to standard

precision. Effort required to use the system is mostly for constructing formal

specifications but automated tools can alleviate much of the burden. Time and coverage

are difficult to assess without a sizable software base. Presentation, the form of output, is

closely linked to the standard CAPS windowing interface.

Query by consistency has some limitations which affect its performance which are

related to mathematical precision, subtype mapping, and deep semantics. Suggested

enhancements for overcoming these limitations are given.
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VII. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH

A. INTRODUCTION

This chapter summarizes the contents of the dissertation, identifying those areas that

are contributions to the state of the art, and then offers suggestions for future research. The

suggestions for future research are divided into two areas. The first area describes

changes that could be made to the current system to enhance its performance. The second

area describes enhancements to the system that could be added to improve flexibility and

power.

B. DISSERTATION SUMMARY

This dissertation has described in detail a technique for retrieving reusable software

components from a software base using normalized algebraic specifications as the search

key. The implemented reusable software component retrieval tool is part of a Computer

Aided Prototyping System (CAPS). The goal of CAPS is to provide software designers an

integrated environment aimed at rapidly prototyping hard real-time embedded systems

[LK88, Luqi9l]. Fundamental to this rapid prototyping paradigm is the use of a prototyping

language (PSDL) and formal specification language (OBJ3) to define module interfaces

and behavior. Also fundamental is the use of reusable software components to realize the

design requirements.

The reusable software component retrieval tool uses both PSDL and OBJ3 to search the

software base for components. Two search phases, syntactic and semantic, improve

performance with respect to recall and precision. Given a query in the form of a

specification, syntactic search uses the PSDL description of the query module's interface to

locate candidate software components. Semantic search normalizes the query's algebraic

axioms to compare the behavior of the query against behaviors of the candidate

components. Semantic search is performed using a method called Query by Consistency

(QBC).

This research makes contributions to the state of the art in reusable software

component retrieval. These contributions are:
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A theory (Query by Consistency) and scoring heuristic for comparing
specification semantics based on the existence of a homomorphism between sets
of normalized terms in two algebras

A method and corresponding implementation that determines a set of mappings
between the export signatures of two algebraic specifications

A method and corresponding implementation to develop a set of terms derived
from a specification's test set and export signature

Evidence that large scale reuse is feasible, avoiding the limitations of informal
methods

Provides a new method of retrieval which can serve as the basis for future
automated semantic retrieval and component integration

The implementation of Query by Consistency demonstrates the ability of the method to

rank order candidate specifications based on the behavior defined by their axioms. The

author believes that refinements to the implementation can make it an efficient and

effective tool for locating reusable software components in the CAPS domain. In addition,

the concept can be extended to any application where algebraic specifications are used to

specify object semantics and a rewrite system exists to exercise the semantics.

C. SYSTEM MODIFICATIONS TO ENHANCE PERFORMANCE

This section describes modifications that can be made to the existing system to

improve its performance or extend its capabilities slightly. The modifications suggested

in this section should not be difficult to implement.

1. Operator Overloading

Overloading, or polymorphism, is not supported in the current system, although

both Ada and OBJ3 allow it. The limitation is in the Prolog matching software which

requires the mapping from query to candidate to be injective and the bound operator names

to be unique. In other words, each operator of the query must bind to a unique operator in the

candidate, but the check for uniqueness is done using operator names. The solution to this

problem is to avoid using the real operator names to perform the mapping and uses aliases

instead.

For each candidate, the Prolog predicates would be generated using alternative

names for all operators and an alias list would be maintained to allow the use of actual

names when required, such as during term transformation. A similar alias list would be
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maintained for a query. Using this technique, the Prolog code would no longer be a barrier

to polymorphic mapping and the restriction of using unique operator names could be lifted.

2. Adding Predefined Objects

The current system contains predefined objects that can be used in the definition

of new specifications. The predefined objects offered by OBJ3 include BOOL (Boolean),

NAT (Natural), NZNAT (Positive), INT (Integer), FLOAT, RAT (Rational), QID, QIDL,

and ID (Identifiers). To extend the descriptive power of the language and the matching

power of the system, more predefined objects could be added, such as set, list, stack, queue,

tree, sequence, etc. This would make it easier for engineers to pose some queries, such as

the follow specification for a list of integers:

***(operations nil cons car cdr length sum)

obj MYOBJECT is
protecting LIST[INTI.

endo

The user did not have to write any axioms or define any operators. It also allows

the user to query for more complex objects more easily1 . For example, if the user wanted a

sequence of sets of natural, the query might be:

***(operations nil cons car cdr empty add member union subset)

obj MYOBJECT is
protecting SEQUENCE[SET[NAT]].

endo

Adding more objects to the set of predefined objects requires only adding the object

to the new-objects.obj file and adding constructor terms to the predef-terms file so that the

object can be used in matching.

3. Syntax Checking

The current implementation assumes that the syntax of OBJ3 specifications is

syntactically correct. A parser could be added to the front end of the normalization

routines to ensure that the user's OBJ3 is in correct form. The parser would report errors to

the user, allowing the user to fix the problem before performing the normalization.

1Whether to allow a user to search for complex objects is arguable, since a complex object
could be decomposed and the search performed at a lower level. The system should not,
however, restrict a user from performing this search. Experience will likely dictate the
overall success of searches for complex objects based on the granularity of the objects in the
database.
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Alternatively, a syntax-directed editor could be generated for writing OBJ3

specifications. This tool would ensure that all specifications written by a user are

syntactically correct.

4. Subsort Matching in Prolog

When performing the mapping task in Prolog, predefined sorts are treated as

constants and must match exactly. This means that a query for a set of natural numbers,

for example, would not match to a stored component that implements a set of integers.

Intuitively, this component should be among the candidates presented to the user. One

solution to this problem might be to use Prolog variables for predefined sorts in the query,

rather than constants. In that case it would be necessary to check the consistency of the

binding to that variable and to ensure that the binding is a supersort of the sort sought..

5. Improving Efficiency

The current implementation was designed as a 'proof of concept." As such, there

are many inefficiencies in the system that could be improved. One of the main

inefficiencies in the current implementation is the rewriting process performed during the

matching phase. For each map to a candidate component, the OBJ3 environment is loaded,

initialized, and then asked to perform reductions. This is a slow process. Substantial time

savings are possible if all maps are tested in OBJ3 at the same time, that is, one right after

another, and then scored. This way, OBJ3 is called only one time for each candidate

component. Adding this feature would require some modification to the mechanism that

iterates through the maps and to the scoring system.

Another potential area of improvement is in space efficiency. The

implementation make heavy use of access types, but is not diligent in deallocating used

space. For very large problems, wasted space could lead to a storage error that would

abnormally terminate the program.

There are other situations where the performance of the semantic search may be

unacceptable, such as when there are a large number of candidates or when there are a

large number of maps for any particular candidate. In these cases, heuristics can be used

to reduce the processing time. For example, the system could check the number of maps for

each candidate and attempt to match the candidates with the fewest maps first, reporting

scores as it proceeds. The user could interrupt the remainder search if a candidate looked
acceptable. Another approach would be to evaluate a few of the maps at random and if none

of them look promising, discard that candidate.
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These are only a few suggestions. There are many more possibilities, but these

are left as a subject for future research.

6. Increasing the Number of Allowable Maps

For some combinations, it is possible for a query to map to a candidate in

hundreds of ways. In the current implementation, the system reads from a file all of the

maps found by the Prolog mapping algorithm. With a large number of maps, this can

cause a stack overflow and abnormal termination of the program. For this reason, the

number of maps allowed has been limited to 50. One solution to this problem is to read only

one map at a time from the file, building the the OBJ3 input file as each map is processed.

Another related problem is that for each candidate component, the query by

consistency algorithm must check every possible mapping. In the worst case, this task is

worse than exponential in the number of operators with identical domain and range sorts.

If one allows variables in stored components, which is the case when we store generic

components, the problem is exacerbated. This problem could be alleviated by analyzing

mapping information to discard maps that represent alternative combinations of operator

arguments for an operator that has already been successfully mapped. Another approach is

to retain successful mapping results so that the same combinations are not tried again for

another map, that is, perform only the equivalence checks that have not already been tried.

7. Improving Retrieval Precision

Chapter VI describes two methods for computing ranking precision, which are

required since the semantic matching mechanism does not currently discard any

components that do not appear suitable. The standard measure of precision could be

employed to provide more meaningful comparisons to other component retrieval systems

if the semantic matching system used heuristics to discard some candidates.

One heuristic might use a threshold value to discard components based on score.

One possibility is to average the scores of all candidates and discard those that are below

the average. This would work well when there are many candidates with a wide scoring

distribution. The system could ignore the threshold value when there are only a few

candidates or when the deviation between scores is slight.

Another heuristic, which seems obvious, is to immediately discard components

whose export signatures do not map to the query signature. Currently, they are merely

given a score of 0 and ranked with the other candidates. Using this heuristic introduces a

tradeoff. These components are among the candidates because they mapped to the query
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via their PSDL descriptions, so there is a possibility that some of them are relevant. If they

are all discarded, precision will likely increase but recall may suffer.

D. SYSTEM EXTENSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

1. Knuth-Bendix Completion

The current implementation makes no assumptions about the axioms for a given

specification. The query by consistency method would be most effective (in terms of the

heuristic measure of semantic similarity) if the axiom sets in both the query and the

candidate were Church-Rosser and terminating (see Section III.C.2.b). Checking for the

termination property is undecidable in the general case, although partial procedures that

can handle recognizable subsets could be added. The Knuth-Bendix [KB67] completion

procedure can be used to augment the system of axioms with additional axioms to make the

system Church-Rosser. This process could be added to the semantic normalization

routines. Implementing this extension would require extensive knowledge of term

rewriting theory, the OBJ3 environment, the Knuth-Bendix completion procedure, and the

Lisp programming language.

2. Theorem Proving with Axioms

Section III.C.3 described a method for using the axioms of a candidate as a theory

to prove the axioms of a query. While the impediments to this process described in Section

III.C.3 still remain, some theorem proving can still be done to enhance the scoring and

provide better differentiation between candidate components. To implement this

extension, one would need to parse the axioms of the query, replace variables with

constants of the appropriate sorts, transform the axioms to the candidate component

domain and then perform the proofs. This process would be straightforward for eq axioms

which use export operators, but more difficult for cq axioms which would require an

additional transformation [Gogu88]. For axioms that use hidden operators, the problem is

more difficult .

This process could be used as an additional filter and refined scoring

mechanism. Each candidate would receive credit for the number of axioms from the query

that it could satisfy.

3. Mixflx Syntax

In OBJ3 a user is allowed to use mixfix syntax to define operators and axioms.

The current implementation of query by consistency allows only prefix form for operators.

Allowing mixfix would not alter, for better or worse, the ability of the system to match the
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semantics of specifications. It would, however, provide added flexibility for users writing

specifications and would make the specifications more readable. A program which

performs mixfix to prefix conversion would be a useful extension to the existing system.

4. Generalization Per Category -An Alternative Phase

As seen in Chapter II, many component retrieval mechanisms use classification

schemes and component attributes as a basis for multi-attribute search. McDowell's

[McDo91] syntactic search is faster than a multi-attribute search and has better recall but
lacks precision. Semantic search should provide the precision but if the number of

candidate components is large, the search may not be timely enough. Generalization per

category could be used as a mechanism to reduce the number of candidate components

presented for semantic matching or to ensure that the most likely possibilities are checked

first. PSDL already contains a keywords section that could be structured to contain

attributes for describing components. These attributes would be used to eliminate

components that are not applicable before invoking the semantic search mechanism. The

new schema, with this mechanism in place is shown in Figure 7.1.

Syntactic Syntactic omponents Sfwr

Normalization Matching

r 1 Keywords GeneralizationForral Sec ICandidates

Alternatively, generalization per category could be used after the semantic

matching process to refine the scoring method. Candidates whose attributes match those of

the query would be given a higher score, affecting the overall ranking of the candidate

components.
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5. Mapping Specifications usingAda

Prolog was chosen as the. tool to map specification export signatures because the

implementation was relatively fast and simple, although it did require a language

transformation (from OBJ3 to Prolog predicates). Using another language and processing

environment complicates the overall design of the query by consistency method and the

overall design CAPS system. It also makes CAPS less portable. An alternative to using

Prolog is to use Ada to perform the mapping. This does not mean that a programmer has to

write a general-purpose, backtracking, unification algorithm in Ada. The

implementation could be very specific to matching export signatures in algebraic

specifications. The algorithm will need to consider all of the mapping rules described in

Section IV.I.4.

6. Term Rewriting in Ada

As with the Prolog system, the requirement to have the OBJ3 system complicates

the design and limits portability. A better design would have the term rewriting subsystem

implemented in Ada. The foremost implementation options are to translate the OBJ3

system from Lisp to Ada, or to rewrite/redesign the system (and all hybrids in between).

Another alternative is to select a different algebraic specification language whose syntax

was comparable to OBJ3 and whose implementation might be more readily transformed to

Ada. Any of these options would require substantial effort.

7. Query by Example

During the course of this research on query by consistency, several individuals

(including myself) have questioned the practicality of requiring a user to write a formal

specification for the object sought. Not all users are sophisticated enough to write formal

specifications, much less correct ones. This is a valid question, for which there are several

possible answers.

The first is to say that the users of CAPS are writing formal specifications in the

course of defining a prototype. The QBC method simply takes advantage of that fact and

uses the formal specifications that are being written anyway to locate reusable

components. CAPS users must, therefore, be trained to write formal specifications.

The second answer assumes that there are trained system administrators that

can help the users formulate queries for the components sought. This is, in fact, the way

many organizations manage access to their large databases. If a system administrator is

available to help the user, then he can use his experience to guide the user in writing a

query that will lead to promising results.
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A third answer to the question is to make it easier for the use to write the

specification. The hardest part of a specification to write is the axioms. Instead of having

the user write axioms to define behavior, he simply writes axioms that give examples of

behavior, that is , query by example. For example, consider a query for a routine that sorts

a list of integers. Assuming there is a predefined list object and the user knows about it, he

generates the following query:

***(operations nil cons car cdr sort)
obj SORTFN is

protecting LISTUNT].
op sort: List -> List.
eq sort(cons(3, cons(2, cons(l, nil)))) = cons(l, cons(2, cons(3, nil))) .
eq sort(nil) = nil.

endo

Assuming the user does not know about the existence of a list ubject, he generates

the following:

***(operations nil cons sort)
obj SORTFN is

sort List.
protecting INT.
op nil : -> List.
op cons: Int List -> List.
op sort: List -> List.
eq sort(cons(3, cons(2, cons(l, nil)))) = cons(l, cons(2, cons(3, nil))) .
eq sort(nil) = nil.

endo

These are simple queries. This user does not need to know a lot about algebras;

just the syntax for defining a signature, the way constructors recursively define terms,

and what he wants in terms of inputs and outputs. In fact, this method of query is simpler

for matching since it relieves the system from the burden of generating a test set.

Eichmann [Eich9l] has also proposed using this method of querying with example

to add semantic search capabilities to a faceted classification scheme.

E. CONCLUDING REMARKS

Automatically retrieving reusable components from a software base based on

component specifications is an important factor in the meta-programming approach that is

the basis of PSDL and CAPS. The use of syntactic information in a query specification can
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help to filter through a large software base of components to quickly determine which subset

of the components might be appropriate. The use of the semantic content of the specification

further refines the search and can rank order the candidate components based on their

semantic distance from the query.

The combination of formal methods, rapid prototyping, and reusable software

components can vastly improve the productivity and reliability of software construction.

As the software engineering discipline evolves and the demand for computer-aided

software engineering tools grows, we expect to see increased emphasis in the area of

reusable software component retrieval.
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APPENDIX

1. SOURCE CODE

This appendix contains the source code for the implementation of the system described

in this dissertation. Section A contains the Ada [Verd9l] code for normalization processes.

Section B contains the Ada code for matching processes. Section C contains the input

source for the lexical analyzer [Self9OI and parser [TTS88] generators. Section D contains

the Prolog [Quin9O] source code used for mapping. Section E contains the Lisp source code

used to modify the processes of OBJ3. Section F contains definitions of the predefined OBJ3

objects used in query by consistency, which are simply prefix reformulations of the

predefined objects provided by OBJ3 [SR188]. Section G contains various support files.

A. ADA SOURCE CODE FOR NORMAlIZAION

-- Normalize is the main executable for the normalization process.

with IO...Exceptions, A_.Strings, Unix_.Prcs, UEnv, Text-1O;
with Types-andConstants, Formal.Spec-.Object, Check...Spec...Syntax;
with Obj3...Tokens; use Obj3....okens;
with Obj3-Lex, Obj3...Lex1O, Obj3_.Lex_.Dfa;

procedure Normalize is
Spec...Filename A...Strings.A&String;
FormalSpec Formnal_.Spec..Object.Formal.Spec..Def,
Error_Present Boolean;
No_Filename, No..OBJExtension :exception;

procedure Make_Normalized~ile is separate;

procedure Make-.Set-.of..Ops is separate;

begin
if U_..Env.argvLast > 0 then

SpecYilename := ..Env.argv(l);
if (Spec-.Filename.s'Last > 4) then

if (SpecFilename.s(Spec-.Filename. s'Last-3..Spec...Filename.s'Last)
1=".obj") then

raise No_.OBJ...extension;
end if;

else
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raise No...OBJ~extension;
end if;

else
raise No-.Filenaine;

end if-,

Text-IQ.Put.Line("Normalizing: " & Spec-.Filename. s);
Check-.Spec...Syntax(Spec...Filename, Error_.Present);
if Error..Present then

Text..jO.Put-.Line("Formal Spec contains an Error");
else

Make.Set.o..Ops; --(Specjilename, FormalSpec);
Make-.NormalizedFile;

en d if,

exception
when No-.Filename =>

Text_1O.Put.Line("Usage is: normalize filename. obj");
raise 1O..Exceptions.Name..Error;

when No_.OBJ..extension =>
Text-IO.Put..Line("Filename must have '.obj' extension!");
raise IQ,..Exceptions.Name_.Error;

when IQ..Exceptions.Name_.Error =>
Text-IO.Put-Line("Could not find file: " & Spec...Filename.s);
raise IO-.Exceptions.Name_.Error;

end Normalize;

-- Check_.Spec-Syntax is a stubbed process. It should be expanded in future systems.

with Text-1O, UnixPrcs, A&.Strings;

procedure Check_.Spec...Syntax(
Spec_.Filename :in A..Strings.A...String;

Error :out Boolean) is

ShelLScript-.Cmd-Line : ..Strings.A..String;
Temp :Integer;

begin
--Text-.IO.Put-Line("Starting Procedure Check..Spec...Syntax');
Error := False;
--Text_.IO.Put_.Line("Completed Procedure Check..Spec-.Syntax");

end Check_.Spec-.Syntax;

-- Malce..Set..of_.Ops performs lexical analysis of a given formal specification to find the
-ops comment token and extract the export operator names, placing them in a set.

separate (Normalize)
procedure Make-.Set.of..Ops is



Atoken :Obj3...Tokens.Token;
Temp :A_.Strings.AString;
NoO.ps_.Comment :exception;
Bad_..p...Name :exception;

begin
Obj3_.LexjQ .Openjnput(Specyilename.s);
loop -- to look for the ops-comment which lists the export operations

Atoken :=Obj3-.Lex.Yylex;
exit when WAoken =End-of-Input) or (Atoken = OpsComment_Token);

end loop;
if not (Aoken = Ops-.Comment_.Token) then

raise No_.Ops..Comment;
end if;
Type s..and-Constants. Op_Set_Pkg. Em pty(Form alSp ec.Setof.Ops);
loop

Atoken :=Obj3-.Lex.yylex;
Temp := ..Strings.to.a(Obj3..Lex...Dfa.yytext);
if Temp.s /= "Y' then

if Temp.s(l) < 'a'or (Temp.s(l) > Yz) then
raise Bad_.Op...Name;

end if;
for i in Temp. s'First+ 1..Temp. s'Last loop

if (Temp.s(i) < '0) or ((emp.s(i) > '9) and (Temp.s(i) < 'a') or
(Temp.s(i) > 'Y) then

raise BacL.Op...Name;
end if;

end loop;
Types-.and-Constants.Op-.SetLPkg.Add(Temp, Formal-Spec.Set-o.Ops);

end if;
exit when Obj3_.Lex...Dfa.yytext

end loop;
Obj3-.LexIO.CloseInput;
Text_1O.Put(Spec..Filename.s & " exports");
TextIO.Put(Integer'Image(Types.and.Con stants.Op-Set,.Pkg.

Size(Formal-Spec.Set.o..Ops)));
Text_1O.Put_Line(" operations.");

exception
when No-.Ops-.Comment =>

Text-.IO.Put("File to be normalized must contain an OBJ3")
Text-jO.Put.Line("comment of the form:");
Text...IO.Put-Line(" ***(operations opi op2 op3");
Text_1O.Put(Where opi, op2, etc are the names of the")
Text...O.Put..Line("operations this module will export.");
raise Constraint_.Error;

when BadOp_.Name =>
Text_10I.Put_.Line(Temp.s & " is an illegal op, name.");
Text-jO.Put.Line("Op names must adhere to: [a-zI[a-zO-9]*")
raise Constraint..Erro,,;

end Make..Set.of..Ops;
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-- Make_.Normalized-Yile invokes OBJ3 to expand a given specification, my...spec.obj,
-extracts data from the specification, and stores it into a file, my...spec.obj.norm.

with TextIO; use TextjO;
with Clean...NormalizedFile;
with Make-.Prolog..For_.Stored;

separate (Normalize)
procedure MakeNormalized. File is

Temp_.ScriptName,
Temp_.Shell-Name :A_.Strings.AString;
Obj-Temp-.File,
Obj...Shell-File : TextIO.File_Type;
Command..Line,
NewName: A_.Strings.A_.String;
Temp: Integer;

begin
Temp..Script..Naxne := A...Strings.to...a(Spec-.Filename. s & ".script.obj");
Text-IO.Create(Ob..Temp..File, Out-.File, Temp-.Script..Name. s);
Command..Line := A..Strings.to..a("chmod 777 " & TempScrip..Name.s);
Temp :=Unix-.Prcs.Spawn(Command-Line);
TextO.Put_Line(Obj.Temp..File, "in newlisp.obj");
Text-O.Put(Ob..Temp..File, "in ");
Text-IO. Put...Line(Obj..Temp-File, Spec...Filename. s);
Text-jO. PutLine(Obj..TempFile, "ev (print-mod-name)");
Text..IO. Put-Line(Obj.Temp..File, "ev (print-ps)");
Text-jO.Put..Line(Obj..Temp-File, 'ev (print-ops)");
TextIO. Put-Line(Obj.Temp.Yile, "ev (print-sorts)");
-- axioms not used in normalization
--Text-jO.Put-Line(Obj.Temp..File, "ev (print-axioms)");
Text..IO. Put..Line(Obj.Temp..File, "ev (print-generics)");
Text-.IO.Put..Line(Obj..Temp..Yile, "q");
Temp_.ShellName :=..Strings.to...a(Spec..ffilename.s & ".shell");
Text_1O.Create(Obj.Shell..File, Out_.File, Temp_.ShellName. s);
Text-IO.Put.Line(Ob...Shell-File, "obj 4$1 >$21);
Command..Line := &Strings.to..a("chmod 777 " & TempShellName.s);
Temp :=Unix-.Prcs.Spawn(Command-.Line);
New-.name := A-Strings."&"(Spec...Filename, ". norm");
Command-Line := AStrings.to.a(Temp_.ShellName.s & ""&

TempScript_.Name.s & " " & New...name.s);
Text_1O.Put_.Line("Running OBJ3 task to expand module");
Temp :=Unix-.Prcs.Spawn(Command-Line);
Text-IO. Put...Line("Finished OBJ3 task");
Text-jO.Delete(Obj.Temp..File);
Text-IO. Delete(Obj..Shell..File);
Clean-.Normalized-.File(New-Name);
MakePrologjfor-Stored(New_.Name, Form alSpec. Set.o..Ops);
TextIO.Put_Line("File: " & New..Name.s & " created.");

end Make..NormalizedFile;



-- Clean-.Normalized-.File removes extraneous OBJ3 output from the .norm file

with TextjO; use Text_1O;
with AStrings;
with Unix...Prcs;

procedure Clean-..Normalized.ffile
(File_.Name :in A...Strings.A..String) is

Temp.file,
Norm-File :TextjQ.File..Type;
Line :String(l..1000);
CmdLine : &Strings.A&String;
Temp :Integer;
Linejength :Natural;

begin
TextIO .Qpen(Norm...File, In_.File, Fil e..Name .s);
Text-jO.Create(Temp..File, OutFile, FileName.s & ".temp");
while not End-of.ile(Norm...File)
loop

while not End..of..File(Norm...File)
loop

TextjO.GetLine(Norm..File, Line, Line_.Length);
if Line..Length > 3 then

if Line(1..3) = "!!!" then
Put..Line(Temp_.File, Line (.Lin e_.Length));

end if;
exit when Line(1..3)=

end if;
end loop;
while not End..ofjFile(Norm_.File)
loop

Text_1O.GetLine(Norm_.File, Line, Line...Length);
Put_.Line(Temp_.File, Line(1. .Line_.Length));
if Line-Length > 3 then

exit when Line(1..3)=
end if;

end loop;
end loop;
TextIO.Close(Temp_.File);
Cmd_~Line := AStrings.to-.a("mv " & File..Name.s & ".temp

& Fie_.Name.s);
Text-IO.Delete(Norm_.File);
Temp :=UnixPrcs.SpawnCCmd_.Line);

end Clean..NormalizedFile;
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-- Make_.Prolog..forStored transforms a specification's export signature into a Prolog
-database of facts for use in mapping components. The Prolog code is stored in the .norm
-. file.

with Unix..Prcs, A...Strings;
with TextJO; use Text_10I;
with Obj3..Tokens; use Obj3..Tokens;
with Obj3-.Lex, Obj3..Lex-IO, Obj3-Lex-.Dfa;
with TypesMdncLConstants, Get-.Generic-.Sorts;

procedure Make...Prolog...forStored
(File-..Namne A...Strings.A..String;
Set-.Of-Ops, Types...andCon stants.Op-SetLPkg. Set) is

TempFile,
Cat_.Shell .Text_1O.File..Type;

Sort..Name,
Op-.Name,
PrincipalSort,
Command-.Line,
Generic...Predicate A...Strings.A...String;
Tok .Obj3...Tokens.Token;

Bad_.Op-.Name exception;
Position .Natural;

Temp .Integer;

AddComma Boolean :=False;
Gen eric-.Param eter-.Seq Types-and-Constants.A_StringSeq_Pkg. Sequence;

procedure Make_.Argument_.Predicate(Temp.File :TextJO.File-.Type) is separate;
procedure Make..Op...Predicate(Temp..File :Text-IO.File_..Type) is separate;

begin
Text_10I.Create(Temp..File, Out..File, Filey.ame.s & ".temp");
Principal-.Sort :=Get_.Principal..Sort(FileName);
Generic..Parameter-.Seq :=Get_.Generic..Sorts(File..Name);
Obj3-Lex-IO.Open-nput(File_Name.s);
Text-jO.Put.Line(Temp-.File, "M!prolog");
Generic-.Predicate := A-Strings.to...aC'generic([');
loop

Tok :=j3....Lex.yylex;
exit when Tok = Ops_.Start_.Token;

end loop;
Tok := Obj3...Lex.yylex; -- an op token

lopPosition := 0; -- position of the domain arguments
Tok :=Obj3-.Lex.yylex; -- an op-name token
Op..Name := A-Strings.to..a(Obj3...Lex_.Dfa.yytext);
if Types-and-Constants.Op-.Set-Pkg.Member(QpName, Set.of,.Ops) then

Tok :=j3....Lex.yylex; -- a colon token
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loop
Tok :=Obj3..Lex.yylex; -- Sort or Arrow token
exit when Tok = Arrow-.Token;
Position := Position + 1;
Sort-Name := AStrings.to-.a(Obj3..Lex-.Dfa.yytext);
Make.Argument_PredicateTemp..File);

end loop;
Tok := Obj3-.Lex.yylex; -- range sort token
Sort-.Name := A-Strings.to-.a(Obj3-.Lex...Dfa.yytext);
Make-.Op-.Predicate(Temp_.File);
Tok Obj3_.Lex.yylex; -- end expression token
Tok ObJ3...Lex.yylex; -next op or ops-.end token

else - the op-name was not a member of the export set
loop -- skip this op definition

Tok := Obj3&Lex.yylex; -- any token
exit when (Tok = Op...Token) or (Tok = Ops...EndToken);

end loop;
end if;
exit when Tok = Ops-.EndToken;

end loop;
Generic-..Predicate := A-Strings."W(Gen eri c-Predicate, ].D
Text_1O.Put_Line(Temp..File, Gen ericPredi cate. s);
Text-IO.Put-Line(Temp_.File, '!! end-prolog");
Obj3-.Lex..jO.Closejnput;
Text_1O. Create(Cat..Shell, Out_.File, File_.Name. s & ".shell");
Text_1O.Pu..Line(Cat_.Shell, "cat $1 >> $2");
Command_.Line := A_.Strings.to..a("chmod 777 " & File_.Name.s & ".shell");
Temp := Unix...Prcs.Spawn(Command-Line);
CommandLine := &Strings. "&(A-Strings. to..a

(File....ame.s & ".shell " & File_.Name.s & ".temp "), File.jiame);
Temp :=UnixPrcs.Spawn(Command-Line);
Text_1O.Delete(Cat..Shell);
Text-.IO.Delete(Temp_.File);

exception
when BadOp...Name =>

Text-IO.Put-Line("Processing aborted: Op names must be [a-zI[a-zO-9]*");
end Make_.Prologjor..Stored;

Get_.Generic_.Sorts performs lexical analysis on a .norm file to extract the generic
-parameter names from the specification and store them in a sequence.

with A-.Strings;
with TextjO; use Text-1O;
with Obj3_Tokens; use Obj3...Tokens;
with Obj3...Lex, Obj3-LexjO, Obj3...Lex_.Dfa;
with Types-.And-Constants;

function Get..Generic..Sorts
(File-..Name : AStrings.A..String)
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return Types...andConstants.A...String-.Seq.Ykg.Sequence is

Tok :Obj3-.Token s. Token;
A...Seq : Tpes..and-onstants.AStringSej..Pkg.Sequence;
Generics_.Flag :Boolean :=false;

begin
Obj3-.LexIO.Open-Input(FileName.s);
--Text_IO.Put..Line("Opened file: " & File...Name.s);
A_.Seq Typesand-Constants.AString..Seq-Ykg.Empty;
loop

Tok Obj3-.Lex.yylex;
exit when (Tok = Generics-.Start-Token) or (Tok =End..ofjnput);

end loop;
loop

Tok := Obj3...Lex.yylex;
exit when (Tok = Generics-.EndToken) or (Tok =End..pfjnput);

Type s..anC on stan ts.A&String-.Seq-Pkg.Add
(A-.Strings.to-.a(Obj3..Lex...Dfa.yytext), A-.Seq);

Generics_.Flag := true;
end loop;
Obj3...LexIO. Close-.Input;
if Generics..Flag then

Text_..I.Put("Generic parameters are:
for i in 1..Types..and-.Constants.A...String...Seq-Pkg.length(..Seq) loop

Text-1.j.Put
(Types..and_.Constants.&.String_.Seq-Pkg.Fetch(A-Seq, i).s &

end loop;
TextIO.NewLine;

end if;
return A-Seq;

end GetGeneric_.Sorts;

-- Make_.Op-Predicate makes an individual operator predicate for each export operator.

with Types..andConstants;

separate (make...prolog-for-.stored)
procedure Make..0p_.Predicate

(Temp..File -Text-.IO.File_.Type) is

Generic-.Predicate-Part : A-.Strings.A...String;
Generic-Location : Natural := 0;

function Contains(Pattern, 5: A_.Strings.A_.String; start: natural:=1)
return Boolean is

lenjless..one: integer := Pattern.len - 1;
begin



for i in start .. S.len - len~jessone loop
if S.s(i..i+len-less-one) = Pattern.s then
return true;

end if;
end loop;
return false;
end;

function Contains(Str : A_Strings.AString; C Character)
return Boolean is

begin
for Counter in Str.s'First .. Str.s'Last loop

if C = Str.s(Counter) then
return true;

end if;
end loop;
return false;

end Contains;

begin
TextIO.Put(TempFile, "operator(");

-- if the sort is a qualified sort or starts with Elt then it is generic
-- This is not true in the general case with OBJ3 but it is the case
-- with our restricted grammar

if Contains(SortName, '.') or
((SortName.s'Length >= 3) and SortName.s(1..3) = "Elt") then

Put(TempFile, "-, "); -- generic; in Prolog will bind to anything
for Counter in 1..Types-andConstants.AStringSeqPkg.

Length(GenericParameterSeq)
loop

if Contains(AStrings."&( Types-andConstants.AStringSeqPkg.
Fetch(GenericParameterSeq, Counter), "::"), SortName, 1) then

Generic-Location := Counter;
exit;

end if;
end loop;
if (SortName.s = "Elt") and Types-and_Constants.&StringSeq._Pkg.

Length(GenericParameterSeq) = 1) then
GenericLocation := 1;

end if;
Generi c_Predicate_Part := AStrings.to-a("");
if Add-Comma then

GenericPredicate_Part := AStrings."&"(Generic_PredicatePart, ", ");
end if;
Add-Comma := True;
GenericPredicatePart := A-Strings. "&"(Gen eric_PredicatePart, "[");
GenericPredicatePart A&.AStrings."&"(GenericPredicatePart, OpName);
Gen ericPredicatePart ..AStrings."&"(GenericPredicatePart, ", 0, ");
GenericPredicatePart := AStrings."&"(GenericPredicatePart,
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AStrings.UppertoLower(TypesandConstantsA.StringSeqPkg.
Fetch(Generic.Yarameter..Seq, Generic-.Location)));

Gen eric..Predicate..Part A_.Strings."&(Generic.Yredicate..Part, ,)

Generic...Predicate..Part A...Strings. '&"(Generic..Predicate..Part,
NaturalImage(Generic..Location) & "I");

GenericPredicate := A..Strings."&'(Generic_.Predicate,
Gen eric...Predicate..Part);

else
Put(Temp..File, A_.Strings.UpperulTo..Lower(SortName).s & ,)

end if;,
TextjO.Put(Temp..File, Natural'Image(Position) & " )

Text-IO.Put.Line(Temp_.File, A..Strings.Upper_.To...Lower(Qp-.Name).s & ".)

exception
when Constraint-Error =>

Text-IO.Put-.Line("Aborted in procedure: Make_.Op_.Predicate");
TextIO.Put..LineC'Generic sort name is: " & Sort-Name.s);

end Make...OpPredicate;

-Make.ArgumentPredicate makes an individual argument predicate for an argument

of an export operator. It checks to see if the argument is generic or predefined.

with Types,..and-.Constants;

separate Cmake-prolog-for..stored)
procedure Make...Argument_Predicate

(Temp...File : Text-IO.File..Type) is

Genericj'redicatePart :A-.Strings.A...String;
Generic-Location :Natural := 0;

function Contains(Pattern, S: A..Strings.A..String; start: natural:=1)
return Boolean is
len-less.one: integer := Pattern.len - 1;

begin
for i in start .. S.len - len-less-one loop

if S.s(i..i+lenjess~.one) = Pattern.s then
return true;

end if;
end loop;
return false;

end;

function Contains(Str : A...Strings.A..String; C :Character) return Boolean is
begin

for Counter in Str.s'First .. Str.s'Last loop
if C = Str.s(Counter) then

return true;
end if,

end loop;
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return false;

end Contains;

begin

Text_1O.Put(Temp-.File, A_.Strings.Upper-To..LowerCOp...Name).s & " )

-if the sort is a qualified sort or starts with Elt then it is generic
-This is not true in the general case with OBJ3 but it is the case
-with our restricted grammar

if Contains(Sort_.Name, V.) or
((Sort...Name.s'Length >= 3) and Sort..Name.s(1..3) = "Elt") then

Put(Temp.ffile, "_., "); -- generic; in Prolog, binds to anything
for Counter in 1..Types..an&..Constants.

A-String_Seq_.Pkg. Length(Generic-.Parameter-.Seq)
loop

if Contain s(A..Strings. '&'(Type s-.an d.C on stan ts.A..String.S eqPkg.
Fetch(GenericParameter..Seq,Counter), "::"), Sort-.Name, 1) then

Generic..Location := Counter;
exit;

end if;
end loop;
if (Sort..Name.s = "Elt") and (Types-.and-Constants.A..String..Seqj'kg.

Length(Generic_.Parameter.Seq) = 1) then
Generic..Location :=1;

end if;
Generic_.Predicate..Yart := A..Strings.to~..Q.)
if Add-.Comma then,

Gen eric..Yredicate_.Part := A_.Strings. "&"(Generic-Predicate_.Part, " )

end if;
Add-Comma :=True;
Gene ric..Predicate..Part &=A.Strings.'&'(Gen eric-Predicate..Part, ';
Generic,..Predicate-.Part :=A-.Strings. "&(Gen eric..Predicate..Part, Op_.Name);
Generic-PredicatePart :=A_.Strings."&"(Generic..Predicate..Part,

"," & Natural'Image(Position) & ", ");
Generic-Predicate..Part := &..Strings. "&(Generic....redicate..Part,

&Strings. UppertoLower(Type s-an dCon stants.StringSeq-Pkg.
Fetch (Gen eric...Paranieter._.Seq, Generic..Location)));

Gen eric-.Predicate-Part A_.Strings."&"(Generic_.Predicate_.Part, ,)

Generic-.Predicate..Part A_ Stri ngs. &'(Gen eric..Predicate..Part,
Natural'Image(Generic..Location) & "I");

Generic-.Predicate := A-Strings."(Gen eric..Pre dicate,
Gen eric-.Predicate_.Part);

else
Put(Temp.fil e, A_.Strings.Upper..To...Lower(Sort-Name).s & '*)

end if;
Text_1O.Put_ Line(Temp-File, Natural'Iniage(Position) & ".)

exception
when ConstraintError =>
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Text-IO. Put..Line("Aborted in procedure: Make...Argumen-Predicate');
Text_1O.Put..Line(CGeneric sort name is: "& Sort..Name.s);

end Make...Arguxnent...Predicate;

-Types...And_.Constants defines important structures for use through the normalization
-process. During instantiation, this package opens and reads a file called

-"predefined-sorts". This file must be present.

with TextjO; use Text_..I;
with &..Strings, SetLPkg, Sequence_.Pkg;

package Types.And-Constants is

Max-..Maps : constant :=50;
Spec-ilename-..Type : A...Strings.A..String;
Op-.Name-.Type : A-.Strings.AString;

function Equal(X, Y : A,,..Strings.A..String) return Boolean;

package Predefined_.Obj..ortsPkg is new
SetLPk(t => A...Strings.A..String, eq => Equal);

package Op-SetPkg is new
Set_.Pkg(t => A..Strings.A_.String, eq => Equal);

Predef-Obj.Sorts..Set :Predefined.Obj.Sorts_.Pkg.Set;

package A..StringSeq.Pkg is new
Sequence-Pkg(t => AStrings.A..String);

end Types..An&..Constants;

package body Types...AndConstants is
Sort-.File : File_.Type;
Sort_.Name : String(1..32);
Name..Length :Natural;

function Equal(X, Y : A-.Strings.A..String) return Boolean is
Result : Boolean;

begin
Result := X~s = Y.s;
return Result;

end Equal;

procedure Print...&String(X in A..Strings.A..String) is
begin

Text-IO.Put(X.s &
end Print.&..String;

procedure Scan-..Set is new
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Predefined-.Obj-Sorts..Pkg.Scan(generate => Print..A..String);

begin
Predefined-Obj..Sorts...Pkg.Empty(Predef..ObLSorts-Set);
Text-IO.Open(Sort_.File, In..File, "predefined-sorts");
while not EndcL.File(Sort-file) loop

Text-O.Get-..Line(Sort.Yile, Sort-.Name, Name_.Length);
Predefined..Obj_.Sorts-.Pkg.Add(A-.Strings.to-.a(Sortname(1. .Name.Length)),

Predef_0bj_.SortsLSet);
end loop;
Text..IQ.Close(Sort..File);
--Text..IO.Put('Predefined sorts are: ;
--Scan- Set(Predef-Ob..,Sorts..Set);
--Text-IO.New..Line;

end Types...AndLConstants;

with Types,_.AndConstants;
with AStrings;

-Forma..Spec...bject defines a set of a specifications export operators.

package FormalSpec..Object is
type Formal-Spec..Def is
record

Set.ofOps : Types...and_.Constants.Op_.Set..Ykg. Set;
end record;

end Forxnal-.Spec...bject;

B. ADA SOURCE CODE FOR MATCHING

-- Match.Candidates is the main executable for the matching process.

with U..Env, A-..Strings, Unchecked-Deallocation;
with TextIO; use TextjO;
with Formal-.Spec-.Object; use Formal-.Spec..Object;
with Term..Definition..Ykg; use Term_.DefinitionPkg;
with Qp_.Defns-Pkg; use Op-.Defns-Pkg;
with Match, BuildTest..Set, MakejO...List, Generate-.Output.Terms;

procedure Match...andidates is

Query...Filename,
CandidatesFilename,
Scores_.Filenanie,
Cand..Yilename : ..Strings.A_.String;
Formal-Spec :FormalSpec-.Object.Formal-Spec-Def,
Test..Set :TermDefinition-Pkg.Test..Set.Def;
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IO-ist :Term-.DefinitionPkg.1IO0-ListDef;
Score, Length :Natural :=0;
ScoresFile :Text-IO.File-Type;
Candidates_.File :TextIO.File..Type;
A-.Candidate :String(l..80);

procedure Norm-.Query
(Query_.Filename :in A-.Strings.A..String;
Formal-.Spec :in out Formal-Spec..Def) is separate;

procedure Free is new UncheckecLDeallocation
(Object => Maps,
Name => Map-.Access);

begin
Query-.Filename := .env.argv(l);
Candidates_.Filename :=U.env.argv(2);
Scores-ilename := .env.argv(3);

Forma]_Spec :=new Forma]_Spec-.Record;
Norm...Query(QueryFilename, Formal-.Spec);
Build_.Test_.Set(Query-.Filename, Formal-.Spec, Test-.Set);
MakeIO...List(Test..Set, FormalSpec, IO...List);
Generate..Output..Terms(Query..Filename, Formal-Spec, Test_.Set, IO...List);

Text-IO.Open(Candidates..File, In-.File, Candidates..Filename. s);
Text-IO.Create(Scores..File, Out_.File, Scores...Filename.s);
while not End-.of-File(Candidates..File)
loop

GetLine(Candidates_.File, A-.Candidate, Length);
Cand_.Filename := A-Strings.to..a(ACandidate( 1.. Length));
Free(Formal-Spec.Comp.Maps);
Match(Query-.Filename, CanLFfilename, Score,

Formal-Spec, Test_.Set, IO...List);
TextO. Put..Line(Scores..File, Natural'Image(Score));

end loop;
end Match-.Candidates;

i. Normalize Query

-Norm-.Query calls Createjfrom_.Query. This level of indirection should be removed.
-Also, Checking specification syntax is not supported.

separate (Match...Candidates)
procedure Norm-.Query

(Queryffilename :in A_.Strings.A_.String;
Formal-.Spec :in out Formal-Spec-.Object.FormaLSpec..Def) is

Error..Present :Boolean :=False;
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begin
Text-IQ.Put-Line(Normalizing Query: "& Query...Filename.s);
--CheckSpec..Syntax(QtueryFileflame, Error-..Present);
if Error_.Present then

Text-IQ.Put.Line("Formal Spec contains an Error");
else

FormalSpecObject.Create..rom_.Query(Query-Filename, FormalSpec);
end if,

end Norm_.Query;

-------------------------------------------------------------------------------
-The FormalSpec..Object package defines a formal specification and a procedure
-Create-fromQuery which performs normalization.

-------------------------------------------------------------------------------
with Text_10I; use Text-IO;
with Types...And-Constants;
with A_.Strings;
with SetPkg;
with Op_.Defns_..Pkg;

package Formal-Spec..Object is

type Formal_.Spec..Record is
record

Set-.of.-.Ops :Types..andConstants. Op..Set-Pkg. Set;
Op-.Defns :OpDefns..Pkg.Op_.Defn.SecL-Pkg.Sequence;
Hidden_.Ops : p-Defnskg.OpDefn.Seq-Pkg.Sequence;
Cornp_.Maps :OpDefns-kg.Map.Access;

end record;

type Formal-.SpecDef is access Formal-Spec..Record;

function Equal(X, Y : A..Strings.A...String) return Boolean;

package Op...Name...Set...kg is new SetLPkg
(t => A.Strings.AString, eq => Equal);

procedure Create-from..Query
(SpecFilenarne :in A..Strings.&String;
Formal..Spec : in out ForinalSpec..Def);

end ForrnalSpec..Object;

--------------------------------------------------------------------------------
-- The body for the Formal-.Spec..Object package.
----------------------------------------------------------------- ------------

with Obj3-Tokens; use Obj3FTokens;
with Obj3_.Lex, Obj3_.LexjO, Obj3_.Lex...Dfa;
with Unix-Prcs, Types..and_.Constants;

package body Formal..Spec-.Object is
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function Equal

MX Y :...Strings.A..String) return Boolean is

Result :Boolean;

begin
Result: Xs = Y.s;
return Result;

end Equal;

procedure Create.from-.Query(
Spec_.Filename in AStrings.A..String;
Formal..Spec :in out FormalSpec..Def) is separate;

end Formal-Spec_.Object;

-Create from Query - a procedure to create a normalized query from
-a given query specification.

separate (Formal-Spec-Object)
procedure Createjfrom..Query

(Specffilename :in A...Strings.A...String;
FormalSpec : in out Formal-Spec.Aef) is

Atoken : Obj3_Tokens.Token;
No_.Ops_.Comment :exception;

procedure Make..Normalized..Query..File is separate;

begin
--TextIO. PutLine("Formal-Spec..Object.Createjrom-.Query running');

- First make a set of the op-names that the query module exports
Obj 3_.Lex-IO.Open-.Input(Spec-.Filename. s);
TextIO.Put.Line("Opened file: " & Spec...Filename.s);
loop --to look for the ops-comment which lists the export operations

Atoken := Obj3-.Lex.yylex;
exit when (Atoken = End-of..nput) or (Atoken = OpsjCommentff.oken);

end loop;
if not (Aoken = Ops-.CommentToken) then

raise No..Ops...Comment;
end if;
--Text_1O.Put..Line("Creating empty Set-of-Ops");
TpesandConstants.OpSetYkg.Empty(Formal-Spec.Seto.Ops);
loop

Atoken := Obj3..Lex.yylex;
if Obj3_.Lex_.Dfa.yytext /= ")" then

--Text_10I.Put..Line("Adding: " & Obj3_.Lex_.Dfa.yytext);
Types.and_.Con stants.Op-.Set_.Pkg.
Add(A..Strings.to..a(Obj3..Lex-.Dfa.yytext), FormalSpec.Se..of..Ops);

end if;
exit when Obj3...Lex.._Dfa.yytext=
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end loop;
Obj3-.LexIO .closeinput;
TextjO.Put(Spec..Filename.s & " exports");
TextIO .Put(Integer'Image

(Type s-.and-.C onstants.Op_.Set-.Pkg. size(FormalSp ec. Set-LofOps)));
Text_1O.Put..Line(" operations.");

-- Now make the normalized query file
Make-.Normalized-.Query..File;

--Text_1O.PutLine("FormalSpec.Object.Create-from..Query finished");

exception
when No_.Ops...Comment =>
Text_1O.Put("File to be normalized must contain an OBJ3")
Text..jO.Put-.Line("comment of the form:");
TextjIO.Put..Line(" ***(operations opi op2 op3");
TextjO.Put("Where opi, op2, etc are the names of the")
TextJO. Put...Line("operations this module will export.");
raise Constraint..Error;

end Createj'rom..Query;

Make...Normalized..Query-.File invokes an OBJ3 process to expand the query spec
-and store pertinent information in the normalized file
-Calls Clean_.NormalizecL~ile and Make...rolog-for-.Query

with Clean...NormalizedFile;

separate (Formal-Spec..Object.createjrom..query)
procedure Make_.Normalized_.Query_.File is

Temp_.ScripLName,
Temp...Shel]_.Name : A_.Strings.A..String;
Obj Temp..File, Obj..Shcl1-..Fi1e : TextI0.FileTy pe;
Command-.Line, New-..Name : A..Strings.A..String;
Temp : Integer;

procedure Make...Prologfor...Query
(File...Name :in A..Strings.A...String;
FormalSpec :in out Formal_Spec..Def) is separate;

begin
Temp_.Script..Name := &..Strings. to-.a(Spec-.Filename. s & ".script. obj");
Text_10. Create(Obj..Temp_.File, Out-.File, Temp_.Script-.Name. s);
Command-Line := &Strings. to..a("chmod 777 " & Temp_.Script..Name.s);
Temp := Unix-.Prcs.Spawn(Command-.Line);
Text-O.Put.Line(Obj...emp_.File, "in newli sp.obj");
Text-.IO. Put(Ob...Temp..File, "in ");
Text_IO.Put_Line(Obj.Temp..File, Spec_.Filename. s);
Text-.IO.Put..Line(Obj..Temp-.File, "ev (print-ps)");
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Text..O.Pu..Line(Obj..Temp..File, 'ev (print-ops)');
Text_1O.Put_Line(Obj_~Temp..File, "ev (prin t- sorts)");
--Text_1O.Put_Line(Obj.Temp..File, "ev (print-axioms)');
Text-IO.Put-Line(Obj.Temp_.File, "ev (print-generics)");
Text-IO.Put.Line(Obj_.Temp_.File, %q");
Temp_.ShellName := AStrings.to..a(Spec...Filename.s & ".shell");
Text-IO.Create(Obj..ShellFile, Out-..File, Temp..Shell-Name. s);
Text-IO.Put-Line(Obj.Shel..Yile, "obj <$1 >$2");
Command_.Line := AStrings.to-aC'chmod 777 " & Temp...Shell-Name.s);
Temp :=Unix-.Prcs.Spawn(Command-.Line);
-- Append .norm to the spec filename
New-name := A-Strings.to..a(Spec-.Filename.s & ".norm");
Command_.Line := A-Strings.to..a(Temp...ShellName.s & "&

TempScript..Name.s &" & New...name.s);
Text_1O.New..Line;
Text-IO.Put..Line("Running OBJ3 task to expand query module");
Temp :=Unix-.Prcs.Spawn(Command-.Line);
TextO. Put..Line("Fini shed OBJ3 task");
Text-IO. Del ete(Obj.Temp..File);
Text...IO.Delete(Obj..ShellFile);
Clean_Normalized-File(New..Name);
Make_.Prolog-for-Query(New..Name, FormalSpec);

end Make_.NormalizedQuery..File;

-- Clean-.Normalized-File

with Text-1O; use Text-jO;
with A...Strings;
with Unix...Prcs;

--This procedure writes selected information from a given file to a
--new temporary file, deletes the given file, and then renames the
--temporary file as the given file.

procedure Clean-..Normalized-File(File.name :in A..Strings.A..String) is

Tempffile, NormFile :Text_.IO.File_.Type;
Line :String(1..1000);
Cmd-.Line : A_.Strings.AString;
Temp :Integer;
Line-length : Natural;

begin
TextO .Open(Norm_.File, In.file, File...Name. s);
TextIO.Create(Temp_.File, 0utFile, File...name.s & ".temp");
while not End..of..File(Norm_.File)
loop

while not End...of.File(Norm...File)
loop

Text_10I.Get..Line(Norm..File, Line, Line...Length);
if Line...Length > 3 then
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if Line(1..3) = "!!!" then
PutLine(Temp_.File, Lin e( 1.. Lin e..Length));

end if;
exit when Line(1..3)=

end if;
end loop;
while not En&..of-.File(Norm-.File)
loop

TextjO.Get_Line(Norm_.File, Line, Line_.Length);
Put-.Line(Temp-File, Line(1. .Line...Length));
if Line..Length > 3 then

exit when Line(1..3) = ""
end if;

end loop;
end loop;
Text-IO.Close(Temp-.File);
CmdLine := AStrings.to.a("mv " & File...Name.s & ".tenmp "& File..Name.s);

Temp :=Unix-Prcs.Spawn(Cmd-.Line);
end Clean-Normalized_.File;

-Make..rolog-.for..Query parses the normalized query file and transform export
-operator definitions into a Prolog query
-Calls Store..Hidden-.Op, Mike_.Operator.YPredicate, Make..ArgumentPredicates

separate (Format..Spec_.Object.createjrom..query.make..normlizedquery..file)
procedure Make-.Prolog-.for_.Query

(File-Name in A..Strings.A...String;
Formal_,.Spec in out FormalSpec..Def) is

Temp.ffile,
Cat_.Shell TextIO.File_Type;
Sort-Name,
Op...Name,
Fin ai..Unique-.Predicate,
Range..Sort,
CommandLine,
Storeredicate :A...Strings.A_.String;
Tok :Obj3_.Tokens.Token;
Bad-..p..Name :exception;
Num-.Args :Natural;
Temp :Integer;
Domain-.List :Type s..andCon stants.A_Stri ng..Se q.Pkg. Sequence;
Comrna.Fflag :Boolean := False;
Op-.Definition :Op_.DefnsPkg.Op...DefnType;

procedure MakeOperatorj'redicate
(Range_.Sort :in AStrings.&String;
Length :in Natural;
Op...name :in A-.Strings.A..String;
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Temp-File :in Text_1O.FilejI'ype;
StorePredicate :in out A...Strings.A_.String) is separate;

procedure Make...Argument..Yredicates
(Op...Name in A..Strings.A..String;
Domain-.List in Types-.andConstants.A..String..Seq..Pkg.Sequence;
Temp-File in Text_1O.File-Type;
Store..Predicate in out A-.Strings.A..String) is separate;

procedure Storejlidden_.Op is separate;

begin
Text,_O.Create(Temp..ile, Out...ile, File-Name.s & ".temp");
Obj3_.Lex-IO. Open-Input(File..Nane. s);
Text..IO. Put-Line(Temp..File, "! prolog");
TextIO.Put_Line(Temp..File, "query(OutStream)
Fina]_Unique..Predicate := A-Strings.To-.a('unique([U);
Store..Predicate :=..Strings.To...astore(OutStream, [");
Formal..Spec.Op-.Defns := p...Defns_.Pkg.Op-.D efn..Seq..Pkg. Empty;
Forma]_Spec.Hidden-.Ops :=Op_.D efn s_.Pkg. Op-.Defn_..Seq_.Pkg. Empty;
loop

Tok :=Obj3-.Lex.yylex;
exit when Tok = Ops_.Startff.oken;

end loop;
Tok :=Obj 3..Lex.yylex; -- an op token
loop

Num_.Args: 0; -- number of domain arguments
Domain-.List :=Tpes-and-Constants.A..String-Seq.Pkg. Empty;
Tok :=Obj3_.Lex.yylex; -- an op-name token
0p..Name := ..Strings.to..a(Obj3-.Lex...Dfa.yytext);
if Types-.and-.Constants.Op-.SetPkg.Member(OpName,

FormalSpec.Set_.ofLOps) then
Tok := Obj3_Lex.yylex; -- a colon token
loop

Tok :=j3....Lex.yylex; -- Sort or Arrow token
exit when Tok = Arrow-Token;
Num-.Args := n...args + 1;
Sort-Name := .Strings.to..a(Obj3-.Lex...Dfa.yytext);
Type s-.an d-.Con stan ts.A_.String..Se q-.Pkg.

Add(Sort-Name, Domain-..List);
end loop;
Tok :=Obj3_.Lex.yylex; -- range sort token

Range_.Sort := A...Strings.to..a(Obj3LexjDfa.yytext);
if Comma-Flag then

Final...Unique..Yredicate
A-.Strings."(Fin alUnique..Predicate, " )

end if;
Comma-..Flag :=True;
Fin alUnique_.Predicate := A_.Strings."&"(Final-Unique-Predicate,

&..Strings. Lower...toUpper(Op-.Name));
Store-.Predicate := &..Strings. '&"(Store..Predicate,



&Strings ."&(A-.Strings. Lower...to-.Upper(Op...Name),","));
MakeOperator..Predicate(Range..Sort,

Type s-.an d-Con stants.A..String-Se q-.Pkg. Length (Domain-.Li st),
Op...Name, Temp..File, Store...redicate);

Op-.Definition.Op_.Name :=p...Name;
Qp-.Definition.Num_.Parameters :=Num...Args;
Op-.Definition.Range_.Sort :=Range_.Sort;
Op_.Definition.Domain_.Sorts := p...Defns..Pkg.Pair_.Sequence_.Pkg. Empty;
if Nuxn..args > 0 then

Make.Argument_.Predicates(Op..Name, Domain_.List,
Temp.ffile, Store_.Predicate);

end if,
OpDefns_..Pkg.Op...DefnSeq_.Pkg.

Add(Op_.Definition, FormalSpec.Op_.Defns);
Tok Obj3..Lex.yylex; -- end expression token
Tok Obj3-.Lex.yylex; -- next op or ops-.end token

else - the op-name was not a member of the export set
Store_.Hidden...p;

end if;
exit when Tok = Ops..Endff.oken;

end loop;
-- Close off the query here
Fin alUnique..Predicate := A...Strings. "&"(Final-.Unique...Predicate,"I,)
Text-IO. Put,..Line(Temp..File, FinalUnique.predicate. a);
Text_..O.Put..Line(Temp..File, Store...Predicate.s & "end]), fail.");
TextIO.Put..Line(Ternp.File, "query(OutStream) :- generic(G), " &

" store(OutStream, [generic, GI).");
TextjO .Put..Line(Temp..File, "!! end-prolog");
Obj3...LexI.Closejlnput;
Text-IO.Create(Cat-Shell, Out..File, FileName. a & ".shell");
TextIO.Put_.Line(Cat-Shell, "cat $1 >> $2");
Command-Line := AStrings.to..a('chmod 777 " & File..Name.s & ".shell");
Temp := UnixPrcs.Spawn(Comman&..Line);
CommandLine := AStrings."&'(A...Strings.to-.a

(File...Name.s & ".shell " & File_.Name.s & ".temp "), Filename);
Temp := x....Prcs.Spawn(Command..Line);
Text-IO.DeleteCat_.Shell);
Text-IO.Delete(Temp..File);

exception
when Bad-Op-.Name =>

Text_1O.Put..Line("Processing aborted: Op names must be [a-zI[a-zO..9]*");
raise Constraint_.Error;

end Make-.Prologi.or-.Query;



-Store...HiddenjlOp adds operator definitions of hidden operations to the sequence
-of query op definitions. These are used during parsing of rewrite results

separate (Formal-Spec-Object.createjrom-query.make_normalizedquery.file.
make-.prolog..for-.query)
procedure Store..Hidden_.Op is

Pair Op...Defns_.Pkg.SortPosition_.Pair;

begin
Tok Obj3_.Lex.yylex; -- a colon token
loop

Tok :=Obj3..Lex.yylex; -- Sort or Arrow token
exit when Tok = Arrow..foken;
Num_.Args :=Num...args + 1;
Sort_.Name := AStrings.to-.a(Obj3-Lex..Dfa.yytext);
Type s-.and-Constants.A_.String..Se qj'kg.Add(Sort-Name, DomainList);

end loop;
Tok :=Obj3_.Lex.yylex; -- range sort token
Range..Sort :=A.Strings.to..a(Obj3..Lex...Dfa.yytext);
Op-Definition.Op-.Name :=Op.Name;
OpDefinition.Num-Parameters := Num-.Args;
Op-.Definition.Range-.Sort :=Range-.Sort;
Op-.Definition.Domain..Sorts : p....Defn s_.Pkg.Pair-Sequence_.Pkg. Empty;
for x in l..Types..and_.Constants.A..String..Seq...Pkg.Length(Domain-.List) loop

Pair.Sort-.Name :=A.Strings.to-.a(
Types-.and-Constats.A..String..Seq-Pkg. Fetch (Dom ai n.Li st, x). s);

Pair.Position :=x;
0p-Defns.Pkg.Pair_Sequence_.Pkg.Add(Pair, Op..Definition. Domain.Sorts);

end loop;
Op-.Defns-.Pkg.Op-.Defn-.Seq-Pkg.Add(Op_.Definition, Formal-.Spec. Hidden..Ops);
Tok Obj3-.Lex.yylex; -- end expression token
Tok Obj3-.Lex.yylex; -- next op or ops..end token

end StoreHidden_.Op;

-. Make-.Operator-Predicate creates an operator predicate as part of the query Prolog

separate (Formai..Spec_.Object.createjfrom..query.
make-.normalized.queryjile.makeprolog..for-.query)

procedure Make...Operator_.Pr-.Iicate
(Range_.Sort :in A..Strings.AString;
Length :in Natural;
Op..name in &Strings.A...String;
Temp.ffile in TextIO.File.Type;
Store -Predicate :in out A.Strings.A_.String) is

begin
Text_1O.Put(Temp_.File, "operator(");
Store-.Predicate := ..Strings.'&"(Store..Predicate, Naturallrnage(Length) & " )
if Types-.and-.Con stants. Predefined-Obj..Sorts.Pkg.Member(Range..Sort,
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Types...and-Constants.Prede.Obj.Sorts..Set) then
TextIO.Put(Tenipile, A_.Strings.Upper-to.Lower(Range..Sort).s)#;
Store_.Predicate A:=.&Strings. "&'(Store..Predicate,

A..Strings.Upper.to..Lower(Range..Sort).s & " )
else

TextO. Put(Temp-File, A...Strings.Lower-.to...Upper(Range-.Sort). .);
Store-Predicate := A-Strings."&"(Store..Predicate,
&..Strings. Lowerto..Upper(Range..Sort). s & " )

end if;
Text_1O.Put(Temp..File, "," & Natural'Image(Length) & " )
Text_IO.Put(Temp_.File, A...Strings.Lower..to...Upper(Op...Name).s);
Text-IO.PuLine(Temp..File, );

end Make_.Operator_.Predicate;

-- Malce..Argument_.Predicates creates argument predicates as part of the query Prolog

separate (Formal-Spec..Object.create from..query.
make-.normalize&..query..file .make...prolog-for-.query)

procedure Make..ArgumenPredicates
(Op-.Name in AStrings.A-String;
Domain-.List in Types..an dCon stan ts. A.S trin gS eq.Pkg. Sequence;
Temp-File in Text-IO.File..Type;
Store-.Predicate in out A...Strings.A..String) is

Position Natural;
AppendPart, UniquePart ,
Domain_.Sort,
PositionStr AStrings.AString;
Sort..Posn-.Pair OpDefn s_.Pkg. Sort_Position..Pair;

begin
Position :=1;

loop
Text_1O.Put(Temp.file, "argument(");
TextO. Put(Temp_.File, A...Strings.Lower-.to...upper(Op-.Name). s & " )
Domain-.Sort :=Types..and_.Con stants.&String.Seq..Pkg.

Fetch (Domain-..List, Position);
if Type san d.Con stants. Predefin ed-Obj.S orts-Pkg. Member(Domai nSort,

Types-.and_.Constants. Predef..Obj..Sorts_.Set) then
Text-IO.Put(Temp-File,

&..Strings. Upper..to..Lower(D om ain..Sort). s & " )
StLore-.Predicate := &Strings."&"(Store..Predicate,

A-.Strings. "&"(A-Strings.Upper.to..Lower(Domain...Sort),', ")
else

Text-IO.Put(Tenp-.File,
AStrings. Lower..toUpper(Dornain...Sort). s & " )

Store-.Predicate := AStrings."&'(Store..Predicate,
AStrings. "&"(A-.Strings. Lower..to..Upper(Domain...Sort),', ")

end if;
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SortPosnPair.SorC-Name := .Strings.Upper-to..Lower(Domain..Sort);
Sort..Yosn_.Pair.Position :=Position;
Op_.Defns..Pkg. Pair_.Sequen ce-.Pkg.Add(Sort..Posn_.Pair,

Op_.Definition.Domain..Scrts);
Position_Str A..Strings.to...a(Natural'Image(Position));
Position..Str A-S.trings.Reverse..Order(A_.Strings.Trim(

AStrings.Reverse_Order(Position_.Str)));
AppendPart := A...Strings."&"(A.Strings.Lower.toUpper(Opjiame),

Position..Str);
TextIO Put..Line(Temp_.File, AppencLPart.s & ",)
Unique-..Part := A...Strings."&(Unique-Part, AppendPart);
Store-Predicate := A-Strings."&"(Store-Predicate,

if Position >= Types...and-Constants...String-Seq-..Pkg.
Length(Domain-.List) then

else
UniquePart A_.Strings."&"(Unique..Part, " )

end if;
exit when Position >= Types..and-.Constants.A..String.Seq..Pkg.

Length (Dom ainLi st);
Position :=Position + 1;

end loop;
Text-IO.Put-Line(Temp..File, Unique..Part.s);

end MakeArgurnent-Predicates;

2. Build Test Set

-BuildTest-Set creates the test set from the query signature
-Calls Get-.Predefined-Terms, Make-.User-.Defined-Terms, Print-Term

with TextjO, Form alSpec_.Obj ect, &Strings, TermDefinitionPkg;
with GetSet-ofSorts, Types...an-Constants, GetPredefinedfTerms;
with Print_.Term, Make_.User _DefinedTerms;

procedure Build_Test_.Set
(QueryFilename :in A...Strings.AString;
Formal..Spec in out FormalSpec..Object. Formal-Spec..Def;
Test..Set :in out Term...Definitionkg.Tes..Set..Def) is

Sort_Set :Types-and_Constants.OpS.et..Pkg.Set;
Norm_Filename : A_.Strings.A_.String;
Num..Sorts, Buffer : Natural;
Spaces: String(.15) :="

begin
Text-jO.New-Line;
Text_1O.PuLine('Building a Test-Set.");
Norm...Filename :=k.Strings.to.a(Query-.Filename.s & ".norm");
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Sort..Set :=Get..SetL..Sorts(Norm...Filename);
Num-.Sorts : ypes...and-Constants.Op..Set~kg.Size(Sort.Set);
TestSet :=new Term-.Definitionkg.Test_Set.Rec(Size => Num-.Sorts);

--Text-.I0.Put..Line("Made a test-set with" & Natural'Image(
__ Types...and-Constants.Op..Set..Pkg.Size(Sort-Set)) & "sorts.");
GetPredefined-.Terms(TestSet, Sort..Set);
Make-.UserDefinedTermsCestSet, Sort-Set, Formnal-.Spec);
Text_I0.Put.Line("The terms, in the test set are:");
for i in 1..Term-.Definition-kg.

Term..SequencePkg.Length(Test.Set.Term-.List)
loop

Buffer :=Spaces'Length - Term...Definition..Pkg.Term..Sequence-.Pkg.
Fetch(Test..Set.Term_.List, i).Range..Sort. s'Length;

TextIO.Put(Spaces( 1..Buffer));
Text-IO. Put(Term-DefinitionPkg.Term..Sequence-Pkg.

Fetch(Test..Set.Term..List, i).Range_.Sort.s & " )

PrintTerm(TextIO.StandardOutput,
Te rm..D efini tionPkg.Term..Sequen ce..Pkg. Fetch (Te st_.Set.Term_.Li st, i));

Text-I0.New...Line;
end loop;

end BuildTest.Set;

-Get_Set~oL.Sorts creates a set composed of the names of the sorts used in the query
-specification. Uses auxiliary procedures for diagnostics.

with AL..Strings, SeLPkg, TypesAnd_Constants;
with Obj3...Lex1O, Obj3-.Lex, Obj3..Lex...Dfa;
with Text_10; use TextjO0;
with Obj33Tokens; use Obj3jffokens;

function GetSet_ofSorts(File..Name : in A,_.Strings.A..String)
return Type s...andConstants. Op-SetPkg.Set is

Tok :Obj3Tfokens.token;
A-.Set :Types-.and-.Con stants. OpSet_.Pkg. Set;

procedure Print_..Name(Name : in A_.Strings.A...String) is
begin

TextI0.Put(Name.s &
end PrintName;

procedure PrintSet is new Type s..an dCon stants.Op-.Set.Pkg. Scan(Print..Name);

begin
Obj3-.Lex1O.Open-Input(File.Name.s);
--TextIO.PutLine"Opened file: " & File...Name.s);
Type s.an d_.Con stan ts. Op-Set.Pkg. Empty(A..Set);
loop

Tok := Obj3-Lex.yylex;
exit when (Tok = Sorts-.StartToken) or (Tok =Endofjnput);



end loop;
loop

Tok :=Obj3-.Lex.yylex; -- sorttoken or sorts_endjtoken
exit when (Tok = Sorts...End-Token) or (Tok = End..ofjnput);
Tok :=Obj3-.Lex.yylex; -- sortjd.oken
while (Tok /= Endexpr.Token)
loop

if Tok 1=<then
Type s-.and..Con stants. Op-.SetPkg.

Add(A_.Strings.to-.a(Obj3-.Lex-.Dfa.yytext), A.Set);
end if;
Tok :=Obj3..Lex.yylex;

end loop;
end loop;
Obj3-.LexjO.Close-Input;
--TextIO.Put("Sorts used in this module are: )

--Print..Set(ASet);
--TextIO.NewLine;

return A-..Set;
end Get...et..of~.orts;

-GetPredefinedTerms reads predefined terms from a file and adds them to the
-test set. Uses a recursive procedure Make-..Term.

with Text_1Q, A.Strings, Types-.an&..Constants;
with Term...Deinition_.Pkg; use Term...Definition..Pkg;
with PredeLLexIO;
with PredefLLex_.Dfa; use PredefLex..Dfa;
with Predef..Lex; use Prede..Lex;

procedure Get..PredeinecLTerms
(Test-.Set in out Term...Definition-Pkg.Test_Se..Def;,
SortSet :in Types..and-Constants.Op..Se..Pkg.Set) is

Num-.Term s,
TermGroup..StarLPosition,
SortIndex-.Count :Natural;
Tok :PredefLex.Token;
PredefiSort :A_Strings.A..String;
&.~Term :Term...Definition..Pkg.Term-Access;

procedure Makeff.erm(A.Term : in out Term-.Definition-.Pkg.Term..Access) is

Another_.Term : Term...Definition..Pkg.Term...Access;
Args, Natural;

begin
Tok :=yylex; -- Name:
Tok :=yylex; -- Op...Name
ATerntOp..Name := A-.Strings.to-.a(yytext);
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--TextIO.PutLineC"Term or subterm name is: "& yytext);
A..Term.Range..Sort := Prede..Sort;
Tok :=yylex; -- numargs:.
Tok :=yylex; -- Number of arguments
Args := Natural'Value(yytext);
A&jerm.Num-.Args :=Args;
for k in 1..Args
loop

Another...erm :=new Term...Derinition-Pkg.Term;
MakeT erm(Another-.Term);
&Term.Arguments(K) :=Another_.Term;

end loop;
end Makefferm;

begin
--Text-IO.Put_.Line("Starting Get-Predefined-Terms.');
Term-GroupStart.Position := 1;
Sortjndex..Count :=0;
pre def exio. Openjnput(predef-term s");
loop

loop
Tok := yylex;
exit when (Tok = Predef) or (Tok = End..ofjnput);

end loop;
exit when Tok =End...ofnput;

Tok := yylex; -- a predefined sort
Predef..Sort :=A..Strings.to..a(yytext);
if Types-.and-Constants.OpSet.Pkg.Member(Prede..Sort, Sort_.Set) then

--Text_1O.Put_Line("Adding terms for: " & Predef..Sort.s);
Sortjndex_.Count := Sortjndex..Count + 1;
--Text..IO.Put..Line("Sort index is:" & NaturallImage(Sort~ndex.Count));
Test_.Set.Sortndex(Sort..ndex.Count).Sort..Name

A_ Strings.to...a(Predef.Sort.s);
--TextIO.Put_Line("Added " & PredeL~ort.s & " to Index.");

Te stSet. SortIndex(Sort Index-Count). Start
Term_.Group_~StartPosition;

--TextjO.Pu..Line(CSet start position to:" & NaturallImage(
-- Term.G roup...StarL..Position));
Tok := yylex; -- constants
loop

Tok := yylex; -- a constant or numterms:
exit when Tok = Numterms;
Con stSeq-.Pkg.Add(A...Strings.to-.a(yytext),

Test..Set.Sor-t-ndex(Sort-ndex-Count). Constants);
end loop;
Tok := yylex; -- the number of terms to follow
NumTerms :=Natural'Value(yytext);
--TextjO0.PutLine(Predefsort.s & "will add" &

-- Natural'Image(Num..Terms) & "term(s).");

TestSet.Sort-lndex(Sortjndex.Count). Stop :
Term_,Group_.Start.Yosition + Num..Terms - 1;
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for j in 1..Num...Terms
loop

AfTerm :=new Term...Definition-Pkg.Term;
Make...Term(ATerm);
Term-.Definition-Pkg.Term_Sequence..Pkg.Add(A.Yerm,

Test.Set.TernList);
end loop;
Term...Group-.Start~osition :=Term...Group-.StartPosition + Numff.erms;

end if;
end loop;
predefjexio.CloseInput;
--Text_1O. PutLine("Fini shed Get-Predefinedfferm s);

end Get-.PredefinedTerms;

-Make_User_Defined_Terms makes test set terms from the op definitions sequence
-Contains many diagnostics

with TextIO, A-Strings;
with Term_.Definition...kg; use Term..Definition_Pkg;
with Types.ancLConstants; use Types-.and-.Constants;
with Formal-Spec..Object; use Formal-Spec..Object;
with OpDefnsPkg; use Op...Defnis.Pkg;

procedure Make_.User...Defined_.Terms
(Test...Set in out TestSet..Def;
Sort-Set in out Op-.SetLPkg.Set;
Formal_.Spec in out FormalSpec..Def) is

Rem_.SortLSeq A_.String..Seq...Pkg.Sequence;
Sort..ofjnterest A...Strings.A-.String;
Op-Definition Op-.Defn...Type;
TesLSet.Start.Yosition Natural;
Num..Terms..Added,
SortjlndexLocation,
Sig-..Location Natural;
A.Term TermAccess;

procedure Make-A.Term is separate;

procedure Generator(X :in A-Strings.A..String) is
begin

if not Predefined-Obj.Sortskg.Member(X, PredeCObj-Sorts..Set) then
AString..Seq-Pkg.Add(X, Rem-.Sort_.Seq);

end if;
end Generator;

procedure ScanSet is new Op-.Set..Pkg.Scan(Generator);

begin -- Make..User_.DeinedTerms

--Text_1O.Put_Line("Making user defined terms.");
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Test_.SetStart_.Position :=Term-.Sequence-Pkg. Length(Test..Set.Term-.List) + 1;
Rem...Sort-Seq := A-String-Seq.Pkg.Ernpty;
Scan-.Set(Sor..Set);
for i in 1. .AString-SeqPkg.Length(RemSort.Seq) loop

SortjndexLocation :=0;
Sort...ofnterest := A-Strings.to..a(A_.String..Seq...Pkg. Fetch(

Rem...Sort..Se% i).s);
--TextIO.Put.Line("Making terms for: " & Sort-.of-Interest.s);
Numjl'erms.Added := 0;
for j in 1.. Qp_.Defn..Seqj'kg.Length(Formal-Spec.Op..Defns) loop

if Op...Defn..SeqPkg.Fetch(Formal_.Spec. Op_..Defns, j ).Range_.Sort. s
Sort...olnterest.s then

Num_.Terms,_.Added := Num-Terns-.Added + 1;
Op...Definition := Op_.Defn...Seq..Pkg.Fetch(Formal..Spec.Op..Defns, j);
Sig_.Location := j
--TextIO.Put_Line("Op " & Op-.Definition.Op..Name.s & " has range

-- & Sort...ofjnterest.s & ".");

update the sort..index for this sort if it has not already
-been done.

if Sortndex_Location = 0 then
--Text_1Q.Put..Line("The sort Index has" & Natural'Image(
- Test_.Set.SortIndex'Length) & " cells.");
--Text-IO.Put("The contents are:");
for x in TestSet.Sort-ndex'RdLnge
loop

--Text-IO.Put(" " & TestSet.Sortjndex(x).Sort.Naine.s);
if TestSet.Sort Index(x).SortName.s = I!" then

Test..Set.Sortjndex(x).Start := Test-.Set_.Start_.Position;
Test_-Set.SortjIndex(x).Sort-Name :

A-.Strings.to..A(Sort...ofjnterest. s);
Sortndex_Location := x;
--Text_1O.New_.Line;
--TextjO.Put..Line("The index location for " &

-- Test-Set.Sort-Index(x).Sort .Nanie.s & "is" &
-- Natural'Image(x) &"")
exit;
else if TestSet.Sort Index(x).SortName.s=

Sort...ofnterest.s then
Test...Set.Sort..jndex(x).Start

TestSet..Start..Position;
Sort-ndex..Location := x;
--Text_1O.New_.Line;
--TextIO.PutLine("Tbe index location for "&

Sort..ofInterest.s &" is" &
-. Natural'Image(x) &".)

exit;
end if;

end if;
end loop;
--Text_.IO.New_.Line;
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end if;

- Now make the term for the test set
Make-.A-.Term;
Test-Set.StarL.Position :=Test_.Set..Start..Position + 1;

en d if;
end loop;
Test_.Set.SortIndex(Sortndex.Location). stop
Test-Set.Sort-ndex(Sort-ndex.Location).Start + Nunijierms.Added - 1;

end loop;
end Make_ UserDefinedTerms;

-- Make_a_Term creates a term from an op definition to be added to the test set

with A...Strings; use AS.trings;

separate (make-user_defined..erms)
procedure Make_A_Term is

Dom-.Sort, New-..Constant A_.String;
ConstCount Natural :=1;
Another_.Term :Term-.Definition.Ykg.Term..Access;

begin
--Text-IO.Put-Line("Making a term for: " & Op..Definition.Op..Name.s & .)

ATerm := new Term-.Definition-Pkg.Term;
A_.Term.Op...Name := OpDefinition.Op..Name;
A-.Term.Range..Sort := p.Definition.RangeSort;
A-erm.Num.Args :=Op..Definition.NumParameters;
A...Term.Signature := Sig-Location; -- the location in the map of

- this term's signature
--Text_1Q.Put_Line("Checking its parameters.");
for y in 1. .0p.Deflnition.Num...Parameters loop

Another..Term := new TermDefinition..Pkg.Term;
DomSort := Op_.Defns_.Pkg. Pair_.Sequence..Ykg.Fetch(

Op-Definition .Domain-Sorts, y).Sort_.Name;
--Text_1O.Put..Line("Argument" & Natural'Image(y) & " is "& Dom...Sort.s);
Anoth er...Term.Range_.Sort := A..Strings.toa(Dom..Sort.s);

-if the domain sort of this term is the same as the range sort, then
-we will make that argument a constant of that sort

if Upper.to..Lower(Dom-.Sort).s = Upper-.to...Lower(A...Term.Range-.Sort).s then
New..Constant := A..Strings.to..a(
A_.Strings.Upper..to...Lower(ATerm.Range_.Sort).s & "const" &
Reverse..Order(Trim(Reverse..Order(to..a(

Natural'Image(Const..Count))))).s);
Anothererm.Op..Name := AStrin.-.to-a(New..Constant.s);

-if this new constant is not already in the list of constants then
-we must add it to the sort index info
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if Const...Count > Term..Definition_.Pkg.Const...Seq-Pkg.Length(
TestSet.Sort Index(SortIndex_.Location). Constants) then

Term-.Definition_.Pkg. Con st-.Seq..Ykg.Add(Ne w.Constant,
TestS.et. Sort...ndex(Sort-Index..Location). Constants);

end if;
Const-.Count: Const...ount + 1;

else -- not the same sort, so fill with a placeholder
Another..Term.Op..Name := .,Strings.to..a("!! ");

end if;
A..Term.Arguments(y) :=Another-..Term;

end loop;
Term..Definition-Pkg.Term-Sequence.Ykg.Add(A..Term, Test-Set.TermList);

end Make_.ATerm;

3. Make 10 List

MakejO..List creates the 10 List from the export signature and the test set.
-Calls Make-..Template, Scan...For..Ylaceholder, and Expand Term

with TermDefinition_.Pkg; use Term_.Definition-.Pkg;
with Formal..Spec..Object; use Formal_.Spec_.Object;
with Op...DefnsPkg; use Op...Defns.Ykg;
with &Strings; use A&.Strings;
with Make....emplate, Scan..for-.Placeholder, Unchecke&..Deallocation;
with Text-IO, Print..Term;

procedure Make_.10_List
(TesLSet in out Test..Set..Def;
Formal-..Spec in Forma..Spec..Def;
I0..List in out I0-.List-.Def) is

10_Pair,
Next-jO-.Pair,
Temp, Head,
Tail, Previous I0..ListDef;
Expansion Boolean :=False;

procedure Deallocate is new Unchecked..Deallocation(
Object => I0_air_Rec,
Name => IO...List_.Def);

procedure Expand-Term(
Wholeff.erm,
A..Term :in out Term..Access;
Expansion :in out Boolean) is separate;

begin
Text..jO.New...Line;
Text_1O.Put..Line("Making an IO...List.");
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10_Pair := new IOPairRec;
Head I0= IOPair;
Tail := IO.Pair;

-- for every op-defintion make an initial template of sample terms
-- to be used for later tests. The 10-List is a linked list
--Text_I0.PutLineC'Making templates for the export ops.");
for i in 1..OpDefnSeqPkg.Length(FormalSpec.OpDefns)
loop

MakefTemplate(IO_.Pair.Input, OpDefn_SeqPkg.Fetch(
FormalSpec.OpDefns, i), i);

exit when i = OpDefn_Seq..Pkg.Length(Formal_Spec.OpDefns);
NextIOPair := new IO_PairRec;
10Pair.Next := Next_0_Pair;
Tail := NextO_Pair;
IOPair := NextIOPair;

end loop;

-- Now scan the I0_List looking for terms containing !!! placeholders.
if a term contains a placeholder, expand the term by creating copies

-- of it, filling the placeholder with a suitable subterm taken from
-- the Test_Set. Continue to scan until all placeholders have been removed
IO_Pair Head;
Previous :- Head;
loop

.-Text_1O.Put("Scanning for placeholders in ");
--PrintTerm(Text-IO.StandardOutput, IO_.Pair.Input);
--Text_IO.NewLine;
if Scan_for_Placeholder(IOPair.Input) then

--TextIO.PutLine("Placeholder found in: " & 10_Pair.Input.OpName.s);
Expand_Term(IOPair.Input, I0_Pair.Input, Expansion);
--TextI0.PutLine("Term expansion completed.");
Temp := I0_Pair.Next;
if IOPair = Head then -- if deleting the head of the linked list

Head := IOPair.Next;
Previous := I0_Pair.Next;
--TextIO.PutLine("Changing the head of the IOList.");

else -- deleting a node in the middle of the linked list
Previous.Next := IOPair.Next;
--TextIO.PutLine("Dereferencing a middle node in the I0_List.");

end if;
--Text_IO.PutLine("Pointers have been updated.");
Deallocate(10_Pair); -- Garbage collection
--Text_1O.PutLine("Deallocated the I0_Pair.");
I0_Pair := Temp; -- let's consider the next term

else - the term did not have a placeholder, skip it
Previous := 1OPair;
I0.Pair := IOPair.Next; -- let's consider the next term

end if;
exit when IO_Pair = null;

end loop;
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10-.List :=Head;
Text-jO.Put..Line("The input terms in the 10_ List are:");
Temp := Head;
loop

Text-IO.Put('")
PrintTerm(Text_1O.Standard-Output, Temp.Input);
TextO .NewLine;
Temp :=Temp.Next;
exit when Temp = null;

end loop;
end MakejO..List;

-Makeff.emplate makes a template for a given op definition so that it can be added
-to the 10 List

with Term-.Definition-Pkg; use Term_.DefinitionPkg;
with Op-Defns-Pkg; use Op..jDefnis..kg;
with A...Strings, TextIO;

procedure Make..Template
(A...Term :in out TermAccess;
Op...Def in OpDefn_.Type;
Signature_.Loc :in Natural) is

Subterm : Term..Access;

begin
--TextI0.Put-.Line('Making a template for: " & Op...Def.Op..Name.s);
Afferm := new Term;
A..Term.Op_.Name := A_.Strings.to...a(Op-.Def.OpName.s);
A..Term. Range..Sort :=A..Strings.to..a(O p-.Def. Ran ge.S ort. s);
A..erm.Num..Args :=Op...Def.NumParameters;
A_.Term.Signature := Signature_.Loc;
for i in 1..Op_ Def.NumParameters
loop

Subterm := new Term;
Subterm.Op..Name := &Strings. to...a("!!!");
Subterm.Range_.Sort := A_.Strings.to..a(Pair_.Sequence-.Pkg. Fetch

(Op-Def.Domain..Sorts, i).Sort-.Name.s);
Subterm.Num.Args := 0;
ATerm.Arguments(i) := Subterm;

end loop;
end Makeffemplate;

-ScanjforPlaceholder is a recursive function that checks to see if a term contains a
-placeholder

with Term-DefinitionPkg; use Terrn..DefinitionPkg;
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function Scanjfor_.Placeholder(A...Term :in Term-..Access) return Boolean is

begin
if ATermn = null then

return false;
else

if Afferm.Op..Name.s !! then
return true;

else
for i in 1. .A.Term.Num_.Args loop

if Scan-for_.Placeholder(A...Term.Arguments(i)) then
return true;

end if;
end loop;
return false;

end if;
end if;

end Scanjor..Placehol der;

-ExpandTerm expands a term containing a placeholder, adding the newly expanded
-terms to the end of the 10 List.
-Makes use of Compare..SignatureL, Copy-Term, Insert-.Term, PrintTerni, and
-- Check-.for...Circularity

with CopyTerm, Print..Term, InsertTerm;
with Checkj..or...Circularity, Compare-..Signatures;

separate (make-io-list)
procedure Expand-Term

(Wholejl'erm, Affermn in out Term.Access;
Expansion :in out Boolean) is

Op_.Defn Op..Defns..Pkg.Op..Defn..Type;
Expansion-..Sort A..Strings.A_.String;
ACopy, Subtermn Term...Access;
NewjO...Pair : IOList_Def,
Flag Boolean;
Test_.SetPointer Term.._Access;
Term-.List-Start..Posn,
Term...List..Stop_.Posn,
Term...Li st..Pointer,
Sortjlndex-.Position :Natural;

begin
--TextIO. PutLine("Expanding term: "& A-.Term.Op_.Name. s);
Expansion := False;
for k in 1..A..Term.Num...Args loop --for each argument in the term

if A..Term.Arguments(k).Op..Name.s = 'T!" then --a placeholder
--Text_1.0.Put("Placeholder in pnsition:" & NaturallImage(k) & ")
-- Now search the op definitions to find the sort of the argument.
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-It is possible that the placeholder to be filled is a
-predefined generic whose sort is unknown by the term.

-The user must! export the constructors for predefined generics!
for i in L..0p..Defn s_.Pkg.0Op-.Defn..Se q..kg. Length

(Forma1_.Spec.OpDefns)
loop

Op-.Defn :=p...Defnskg.Op_Defn-Seq..Pkg. Fetch
(Formal.Spec.Op..Defns, i);

if Compare-.Signatures(A-.Term, Op...Defn) then
ExpansionSort :=A...Strings.to..a(Pair-.Sequence..ykg. Fetch

(Op...Defn.Domain-.Sorts, k).Sort _Name.s);
--Text_1O.Put.Line(" Its sort is " & Expansion..Sort.s &"")

-Check the index to find out where in the test-.set are the
-terms we will use to expand the given term

Expansion :=True;
for j in Test_.Set.Sortjlndex'Range
loop

SortIndexPosition := j
TermListStartPosn Test...Set.SortlndexQj).Start;
Term...List..StopPosn :=Test-.Set. SorLjndexQj). Stop;
exit when Lower-to-Upper(Test..Set.SortIndexQj).SortName).s

= Lower..to...Upper(Expansion_.Sort).s;
end loop;
--Text_1O.Put_Line("Expansion with Test..Set terms" &

-- Natural'Image(Term-ListStartPosn) & " through" &
-. Natural'Image(Term-.List...StopPosn) &"")

Term-List-Pointer := Term-List StartPosn;
loop

Copy-.Term(Whole-.Term, ACopy);
--TextIO.Put-Line("Made a copy of:

-- & Whole..Term.OpName.s & "1."t);

--Text-O. Put(" From: ");
--Print..Term(Text-1Q.Standar&..Output, A._Copy);

--Text-jO.Put(" to ");
-We must avoid circularities here! If the term to be added
-has an argument whose sort is the same as the range sort
-of the given term, that will create a cycle.

TestSet_Pointer := TermSequen ce-Pkg. Fetch
(Test..Set.Term...List, Term_.List..Pointer);

Copy....erm(Test-.Set...Pointer, Subterm);
Check-for-.Circularity(Whole-Term, Test-.Set, Subterm);
if A_Term /= Wholeff.erm then

Check..,or_.Circularity(A..Term, Test-..Set, Subterm);
end if;
Flag := False;
Insert.yerm(A_.Copy, Subterm, Flag);

--PrintTerm (TextO. Stan dard_.Output, &..Copy);
--TextIO.New..Line;

New_10_Pair := new 10_Pair..Rec;
New_1O_Pair. Input := A-.Copy;
Tail.Next := NewIO_.Pair;
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Tail :=New_10O..Pair;
Term...List_Pointer :=Term_.ListPointer + 1;
exit when Term-..List-Pointer > Term-.List...Stopj'osn;

end loop;
exit; -- there should be only *one* signature to match the export

-signature.

end if;
end loop; - to check the op definitions
exit; *-We only allow one expansion per pass. Other placeholders

-in this term will be expanded when the copies are examined.
else -- this op-name is not a placeholder

-- depth first search
Expand-Term(Whole-.Term, Aff.erm.Arguments(k), Expansion);
exit when Expansion;

end if;
end loop; - to check the arguments of a given term

end ExpandTerm;

-Compare...Signatures checks to see if the structure of a given term matches that
-o f a given signature

with Term...Definition_.Pkg; use Term_.DefinitionPkg;
with OpjDefnsjFkg; use Op-.Defns..Pkg;
with A-.Strings; use AStrings;

function Compare...Signatures
(A...Term Term-.Access;
Op...Defn Op_.Defn_.Type) return Boolean is

Result :Boolean :=True;

begin
if (Aerm.Op_.Name.s = Op_.Defn.Op-.Name.s) and

(A...Term.Num..Args = Op-.Defn.Num...Parameters) and
(Lower...to...Upper(A.Term. Ran ge..Sort). s =

Lower..to...Upper(Op..Defn.Range-.Sort).s) then
for x in l..A_.Term.Numi..Args loop

if Lower~to..Upper(A..Term.Argurnents(x).Range..Sort).s 1
Lower...to-.Upper(Pair...Sequence...Pkg. Fetch
(Op-.Defn.Domain_.Sorts, x).Sort-.Name). s then

Result :=False;
en d if;

end loop;
else

Result := False;
end if;,
return Result;

end Compare_.Signatures;
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-- Copy-..Term creates a term identical to a given term

with Term-.DefinitionPkg; use TermDefinition_.Pkg;
with A_.Strings; use A_.Strings;
with Text_10;

procedure Copyfferm,
(A...Term in TermAccess;
New_.Term in out TermAccess) is

begin
--Text_I0.Put...Line(Entered copy term");
--Text-IO.Put("Copy )
if A....erm = null then

NewTerm := null;
else

--Text_I0.Put_Line("The term was not null.");
Newff.erm := new Term;
New_Term.Op..Name :=A..Strings .to...a(A-Term .Op-.Name. s);
New...Term.Range-.Sort :=A_.Strings.to..a(A-Term.Range..Sort. s);
New_.Term.Num...Args :=ATerm.NumArgs;
Ne w_..Term. Signature := ATerm.Signature;
--TextIO.Put..Line("Base term copied. Now for the subterms.");
for i in 1..A_.Term.Num...Args loop

Copy...Term(ATerm.Arguments(i), New...Term.Arguments(i));
end loop;

end if,
end Copy_.Term;

-- nsert_.Term inserts a term into the first (depth-first) placeholder position
-of a given term

with Term-.Definition..Pkg; use Term_.DefinitionPkg;
with Text_10;

procedure InsertTerm
(ATerm in out Term...Access;
Subterm in Term-.Access;
Flag in out Boolean) is

begin
--Text-I0.Put("Insert )
for x in l..A..jerm.Num.Args loop

if A_Term.Arguments(x).Op_Name.s ="!"then

A-.Term.Arguments(x) :=Subterm;
Flat,: True;
else if ATerm.Arguments(x).Num_.Args > 0 then

Insert..Term(A...Term.Arguments(x), Subterm, Flag);
end if;

167



end if;
exit when Flag;

end loop;
end InsertTerm;

-Checkjfor...Circularity checks each argument of a given subterm to determine if the
-argument is a placeholdey and has the same sort as the whole term's range sort

-If so, it replaces the place. Ader with a constant

with Term-.DefinitionPkg; use Term-.Definition..Pkg;
with A_..Strings; use A_.Strings;
with Text_10;

procedure Check...or_.Circularity(
WholeTerm in Term.Access;
Test,_Set in out Test..Set-.Def;
Subterm. in out Term..Access) is

New-.Constant :Term_.Access;
NewName :A_Strings.A..String;
Sort_Index..Position :Natural;

begin
__ search the sortjindex to find the position of the expansion sort
for y in TestSet.SortjIndex'Range
loop

SortIndexPosition:=y
exit when Lower..to-..Upper(Test..Set.Sort Index(y).Sort..Name).s

Lower_toUpper(Wh oleff.erm. Ran ge_S ort). s;
end loop;
for x in 1. .Subterm.Num-.Args loop

if (Lower-.to_.UpperSubterm.Arguments(x).Range-.Sort). s=
Lower-to..Upper(Whole-.Term .Range-.Sort). s) and
(Subterm.Arg-uments(x).0p..Name.s = "!!!") then

--Text_1O.Put_.Line("Circularity Detected.");
NewConstant :=new Term;
New-.Constant.Range..Sort :=AStrings.to-a(Whole..Term.Range-Sort.s);
New-Constant.Num-Args :=0;
if Con st_Seq..Pkg. Len gth(Te st..Set.S ortjndex(Sort.n d ex-Position).

Constants) > 0 then
New-Constant. Op-.Name := A_.Strings .to..a(ConsLSeq..Pkg. Fetch(
TestSet.Sortjlndex(Sortndex_Position).Constants, 1).s);

else
New_Name :=&S-1ings.to.a(Upper..to-Lower

(Whbole..Term.Range..Sort).s & "consti");
Con stScq.Pkg.Add(New...Name,

TestSet.Sort_ Index(SortIndexPosition).Constants);
New_..Constant.0p-.Name := AStrings.to..a(New-Name.s);

end if;
Subterm.Arguments(x) :=NewConstant;
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end if;
end loop;

end Check-for-Circularity;

4. Generate Output Terms

-Generate_Outputjlferms builds art OBJ3 input file which will be used to reduce the
10 J List inputs. After the reductions are complete, the output file is cleaned and the

-canonical terms are parsed and stored into the output side of the 10 List

with Types-and-Constants, Unix_Prcs;
with Text_10; use TextjO;
with Formal..Spec-.Object; use Formal..Spec-.Object;
with Term Definition Pkg; use Term_Definition_.Pkg;
with A_-Strings; use A_Strings;
with Op_.Defns..Pkg; use Op-.Defns-Pkg;
with Print_Term, Clean...OutputFile, Term_Parser;

procedure Generate_.OutpuLterms
(Query..Filenanme :in A_.String;
FormalSpec in Forinal-Spec..Def;
TestSet in Test-.SetDef;
I0 List :in out 10_ListDef) is

Command-Line,
New_Name,
TempScript-Name,
Temp...Shell-Name A...Strings.A-.String;

Obj-.Shell-File Text_10.Fileff.ype;
Temp Integer;
NumConstants :Natural;
AnJORec :10_ListDef;
AnInput :TermAccess;

begin
Temp-Script- Name :=AStrings.toaQuery..Filename. s & ".script. obj")
TextjO.Create(Obj.Temp-.File, Out_File, Temp,..Script_.Name.s);
Command_Line := A_Strings.to.a("chmod 777 " & Temp...ScripL-Name.s);
Temp := Unix-Prcs.Spawn(Command_.Line);
TextI0.PutLine(Obj..TempFile, "in newlisp.obj");
TextjO.Put-Line(Obj..Temp..File, "in new-objects.obj");
Text-IO.PutLine(Obj..TempFile, "in " & Query-.Filename.s);

-need to "openr .' and declare some constants
Text-jO.Put-Line(Obj..Temp_.File, "openr.)
-declare constants here

for i in Test...Set.Sort Index'Range
loop

NumConstants := Con st..Seq...Pkg. Length(TestSet. SortIndex(i). Con stan ts);
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if Nuxn..Constants > 0 then
for j in 1..Num..Constants
loop

Text-j0.Put-Line(Obj.Temp..File, "op " &
Const_.Seq...Pkg. Fetch(Test-Set.S ort-lndex(i). Constants, j).s &

11:-> " & Test-Set.Sort..Index(i).Sort Name.s &"
end loop;

end if;
end loop;
Text_10 .Put..Line(Obj-Temp..File, "close");
-- now enter the reduction loop
Text-IO. Put..Line(ObLTemp..File, "ev (do-red-loop)");
-- now submit the terms from the I0_List, end each with a".
An_10_Rec :=new I0...air_.Rec;
An...nput :=new Term;
AnJORec :=0_OList;
loop

exit when AnJ..10ec = null;
AnInput := An_10_Rec. Input;
Print-Term(ObjTemp_.File, Anjlnput);
TextO .Put..Line(Obj..Temp..File,"
AnQ..Rec :=An...IQ.Rec.Next;

end loop;
-- end the reduction loop and quit
Text-IO.PutLine(Obj.Temp..File,"")
Text-j0.Put-Line(bjTemp_.File,"")
Temp...Shell-Name :=AStrings.to..a(Query_.Filename.s & ".shell");
Text-IO.Create(Obj..Shell-File, Out..File, Temp...Shell.Name.s);
TextI0.PuL-Line(Obj..ShelLFile, "obj <$1 >$2");
CommandLine A= A.Strings.to..a("chmod 777 " & Temp...ShellName.s);
Temp :=UnixPrcs.Spawn(Command-Line);
-- Add ".output:' to the file name
New...name := A..Strings.to...a(Query-.Filename. s & ".output");
CommandLine :=AStrings.to..a(Temp...ShellName.s &

& Temp...Script...Name.s & ""& New..name.s);
Text_10.NewLine;
TextI0.Put-Line("Running OBJ3 task to determine 10_List outputs.");
Temp :=Unix-.Prcs.Spawn(CommandLine);
Text_10.PuLLine("Finished OBJ3 task.");
Text-IO.Delete(Obj.Temp..File);
TextI0.Delete(Obj..ShelLFile);
Clean...OutputFile(New..Name);
Term..Parser. Parse-.Output_.Terms(New...Name, FormalSpec, Test-.Set, I0..List);
-- temporary stuff
Text-I.1.New-line;
Text-IO.Put..Line("Here are the 1/0 List outputs...");
An-.I0..Rec := 10-.List;
loop

Text_I0.Put("")
Pri n tTerm(Text-.I 0. Stand ard-.0utput, Anj O.Rec. Output);
Text-IO.New-.Line;
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AnIO_Rec :=An-10-Rec.Next;
exit when An-JO-.Rec = null;

end loop;
end Generate..Output...erms;

-Clean_.OutputFile removes extraneous OBJ3 output from the file containing the
-reductions of the 10 List terms

with Text_10; use TextjO;
with A_Strings, Unix...Prcs;

procedure Clean...OutputFile
(File..narne :in A...Strings.A..String) is

Temp_.File, OutputFile TextIO.FileType;
Line String(l..1000);
CmdLine A-Strings.A..String;
Temp Integer;
Linejength Natural;

begin
Text_I0. Open (OutputFil e, In...File, File_.Name.s);
Text_1O.Create(Teip.File, Out-..File, File..name.s & ".temnp");
while not End...oL..File(Qutput..File)
loop

TextIO.GetLine(OutputFile, Line, LineLength);
if Line..Length >= 11 then

exit when Line(1..11) = "!!!red-loop";
end if;

end loop;
while not End_ofile(OutpuLFile)
loop

TextIO.GetLine(Output..File, Line, LineLength);
if Line-..Length >= 15 then

exit when Line(i.15) = "!!!end-red-loop";
end if;
while not End.ofLFile(Output..File)
loop

if Line-..Length >= 9 then
exit when Line(1..9) = '!!!result";

en d if;
Text_1O.Get..Line(Output-.File, Line, Line-.Length);

end loop;
if not End-ofFile(Output_.File) then

Put_.Line(Temp_.File, Line( 1..Line_.Length));
end if;
while not End-o(_.File(Output-.File)
loop

TextIO.Get.Line(Output..File, Line, Line...Length);
Put-Line(Temp-.File, Line(1. .Line...Length));

171



if LineLength >= 13 then
exit when Line(i.13) = '!!!end-result";

end if;
end loop;

end loop;
Text-IO.Close(Teip.File);
CmdLine := A..Strings.to..a("mv " & File_.Name.s & ".temp "& File..Name.s);
--Text-I0.Put-Line(Cmd..Line.s);
Text_IO.Delete(Output..File);
--Text_1O.Put..Line("Command Line is " & CmdLine.s);
Temp := Unix-Prcs.Spawn(Cm&..Line);

end Clean...OutputFile;

-- Parse,..OutputTerins may be found in the file Termparse.y in Appendix Section C.

5. M~atch

-Match attempts to match a query spec with a candidate spec. This procedure calls
-ExtractProlog, then Find_.Maps, and finally, Test-.Maps to determine the best

--score for the given candidate

with A-.Strings;
with Text_10; use TextjO;
with Types~andConstants; use Types-.and-Constants;
with FormalSpec_.Object; use Formal-Spec..Object;
with TermDefinition-.Pkg; use Term_.Definition-Ykg;
with Op_.DefnsPkg; use Op...Defns...Pkg;
with Check...Spec_.Syntax, ExtractProlog, Find-Maps, Test.Maps;

procedure Match
(Query-Filename in A Strings.A..String;
Candidate-ilename in A_.Strings.&String;
Score .in out Natural;
FornalSpec in out FormalSpec..Def;
Test Set .in out Test-Set.Def;
10 List :in out IOList..Def) is

Query..Prolog,
Can didate-.Prolog AStrings.A..String;
Num...Maps Natural := 0;

begin
Text-IO.New..Line;
Te xtI0. Put-Lin e(" # ## ## ###### #### ### # #### ##### ### #### ###

TextIO.Put.Line("Matching " & Query...Filename.s & " with " &
Candidate-.Filename.s & .)
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Extract-.Prolog(Query..Filename, Can didate.ffilename,
Query-.Prolog, Candidate_Prolog);

Fi n&.Maps(Query-.Prolog, Can didate_.Prolog, Formal-Spec, Num-Maps);
if NumMaps = 0 then

Score := 0;
else if Num_-Maps <= Types...an&..Constants.Max..Maps then

Test...Maps(Test.Set, FormalSpec, IOList, Query-Filename,
Candidate-.Filename, Score);

else -- too many maps to consider
Score := 1;

end if;
end if;

exception
when constrainterror =>

Text_-IO.Put("Usage is: normalize-query )

Text-IO.Put-Line(<queryfile.obj> <candidatefile.obj>");
end Match;

-Extract_Prolog extracts the Prolog code from the normalized query and candidate files
-for use in mapping

with A_Strings;
with TextIO; use TextIO;

procedure Extract_Prolog
(Query-Filen ame,
Candidate-Filename :in AStrings.A.String;
Query..Prolog,
Candidate-Prolog :in out A..Strings.A...String) is

Query-..File,
Query..Prolog..File,
Candidateffile,
Candidate-.Prolog-.File :Text_10. File..Type;
Line :String(l.. 1000);
Norm-Query..Filename,
Norm...Cand-.Filename : &Strings.A-.String;
Line-length Natural;

begin
-The code below extracts the prolog statements from query.normn
-and puts them in queryprolog

TextO .NewLine;
Text-IO.PutLine('Extracting Prolog from normalized files.");
Text-IO.Put..Line("Query file is: " & Query...Filename.s);
Norm...Query...Filename := A-.Strings."&'(Query-.Filename, ".norm");
Query-.Prolog := A..Strings.'&XQuery_.Filename, ".prolog");
Text-IO.Open(QueryFile, inFile, Norm...Query...Filename.s);
TextJO. Create(Query..Prolog-.File, Out_.File, Query..Prolog. s);
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while not End-o..ile(Query..File)
loop

TextiO .Get-.Line(Query-.File, Line, Line_.Length);
if Line-Length >= 9 then

exit when Line(1..9) = "M!prolog";
end if;

end loop;
TextIO.Get-Line(Query_.File, Line, Line_.Length);
while not End-of...File(Query..File)
loop

PutLine(Query-Prolog..File, LineC 1.. Line...Length));
TextjO.Get-Line(Query..File, Line, Line_.Length);
if Line-Length > 3 then

exit when Line(1..3) = '!!";
end if;

end loop;
TextO .Close(Query-.Prolog..File);
Text_1O.Close(Query..File);

-The code below extracts the prolog statements from candidate.norm.
-and puts them in candidate.prolog

TextI0.PutLine('The candidate is: " & Candidate-ilename.s);
NormCancLFilename := A-Strings. &(Can didate..Filename, ".norm");
CandidateProlog := AStrings."&"(Candidate_.Filename, ".prolog");
Text I0.Open(Candidate.file, In_File, Norm_Cand_Filename.s);
TextjO .Create(Candidate..Prolog-.File, Out..File, Candidate-Prolog. s);
while not End-ofFile(Candidate File)
loop

Text_10.Get..Line(CandidateFile, Line, Line...Length);
if Line-Length >= 9 then

exit when Line(1..9) = "!!prolog";
end if;

end loop;
TextjO.Get..Line(Candidate..File, Line, LineLength);
while not End...of...ile(Can didate.ffile)
loop

Put_.Line(Candidate-.Prolog_.File, Lin e(L 1.Lin e-.Length));
Text_10.GetLine(CandidateFile, Line, Line...Length);
if Line_.Length > 3 then

exit when Line(1..3) ='T;
end if;

end loop;
TextjO.Close(Candidate-Prolog..File);
Text IO.Close(Candidate File);

--TextIO.Put..Line("Extracted Prolog statements from "&

-- Norm-Queryfilename.s & "and " &
-- Norm_.CandFilename.s & ")

end ExtractProlog;
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-Find..Maps invokes Prolog to determine if the query spec maps to the candidate
-component spec, and lexically analyzes the Prolog results, storing the maps
-in a linked-list map structure

with Types-.an&..Constants, UnixPrcs, AStrings;
with TextjQ; use Text_10;
with op..defns..pkg; use op-.defns-pkg;
with prolog-lex; use prolog-lex;
with prologjlex.dfa; use prolog-ex..dfa;
with prologjex.jo;
with FormalSpecObject, Module-is_Generic, Unchecked_Deallocation;

procedure FincLMaps
(Query-.Prolog, CandidateProlog in A..Strings.AString;
Formal_Spec .in out FormalSpecObject.Formal-Spec..Def;
Number...ofjMaps in out Natural) is

Comrnand_.Line,
CandidateFile,
Maps...Filename A..Strings.A String;
Query-.Prolog..File,
Maps_.File,
CandidatePrologFile TextO .FileType;
Temp Integer;
Tok .Prolog...Lex.Token;

Op-Definition OpDefnffype;
Sort_-Pos_-Pair SortPosition_.Pair;
A-.Map, Head,
NextMap .Op...Defns_Pkg.MapAccess;

Counter .Natural;

Candidate-isGeneric Boolean;
TooMany-.Maps exception;

procedure Check...Generic-Consistency is separate;

procedure Free is new Unchecked_Deallocation(
Object => AStrings.Stringjrec,
Name => A...Strings.A...String);

begin
Maps-.Filename AStrings.to-.a(Candidate-Prolog.s & ".maps");
Command-Line AStrings.to..a("findmappings " & Query-.Prolog.s &

" "& CandidateProlog.s & " " & Maps-.Filename.s);
Text_IO.Put..Line('Running Prolog Executable to find mappings.");
Temp :=Unix..Prcs.Spawn(CommandLine);
Free(Command-Line);
Candidate-File := A.Strings.Change(Candidate-.Prolog,

Candid ateProlog. s'Length -6, CandidateProlog. s'Length, ".norm");
Candidate-isGeneric :=Module-isGeneric(CandidateFile);
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-~Need a test here to determine if there are too many possibilities
-to consider.

TextIO.Open(Maps-File, In.ffile, Maps-.Filename.s);
Number.ofMaps :=0;
while not End_ofFile(Maps..File)
loop

TextIO. Skip...Line(MapsFile);
Number-ofMaps :=Number_ofMaps + 1;

end loop;
TextIO.Close(Maps..File);
Number..o..Maps :=Number..of..Maps - 1; -- The last line is not a map
--TextjQ.PuLine("The number of maps found in the file was:" &

-- Natural'Image(Number.ofLMaps) & ".");
If Number..ofLMaps > Types-andConstants.Max-.Maps then

Text-IO.Pu..Line("The number of maps found was:" &
Natural'Image(Number-ofMaps));

raise TooMany..Maps;
end if;

Number,..ofMaps := 0;
Prolog...Lex-IO. Open-Input(Maps-Filename. s);
TextIO.New-Line;
TextIO.Put_Line('Scanning Prolog results.");
A-.Map := new Maps;
A.Map.Map := OpDefn_Seq..Ykg.Empty;
Head := AMap;
NextMap := A.Map;
Tok := yylex; -- Left bracket or StartGenerics
if Tok = StartGenerics then

TextIO.PutLine(QueryProlog.s & " does not map to "&

CandidateProlog.s & ")
else

loop
Number_of..Maps := Number.of.Maps + 1;
--TextIO.Put.Line('Scanning map:" &

Natural'Image(NumberoLMaps));
Tok := yylex; -- an op name
loop

Op...Definition.QpName := AStrings.to..a(yytext);
Tok :=yylex; -- a comma
Tok :=yylex; -- number of domain parameters
Op-.Definition.NumParameters := Natural'Value(yytext);
Tok :=yylex; -- a comma

Tok :=yylex; -. Range sort
Op-.Definition .Range..Sort := AStrings.to-a(yytext);
Op-Definition.Domain-Sorts := Pair-.Sequen ce..Pkg. Empty;
Tok := yylex; -- a comma
Counter := 1;
while Counter <= Op..Definition.Num_Paravneters
loop

Tok := yylex; -- a domain sort
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SortPosPair.SortName := A_.Strings.to..a(yytext);
Tok yylex; -- a comma
Tok yylex; -- the domain sort's position
Sort_Po s_Pair. Position := Natural'Value(yytext);
Tok :=yylex; -- a comma
Pair..Sequence-.Pkg.Add(Sort-.PosPair,

Op..Def-inition.DomainSorts);
Counter: Counter + 1;

end loop; -- no more parameters for this operation
Op-Defn..Seq-Pkg.Add(OpDefinition, A&Map.Map);
Tok := yylex; -- End.olLMap token or an op-name
exit when Tok = End_ofMap;

end loop; -- this map is finished
Tok := yylex; -- Generics_Start or another Map (left bracket)
if Tok = StartGenerics then

exit;
else

A.Map := new Maps; -- create a new map structure
NextMap.Next: A-..Map; -- link the last structure to the new one
NextMap := A..Map; -- Position the pointer to the current map
A.Map.Map := Op_.Defn_.Seq_.Pkg. Empty; --initialize the sequence

end if;
end loop;
TextIO.PutLine("The number of maps found was:" &
Natural'Image(Number-o.Maps));

if Candidatejs.Generic then
CheckGenericConsistency;

else
Text_IO. PutLine(" Candidate component is not generic.");

end if;
end if;
prolog-lex-io.closejinput;
FormalSpec.Comp..Maps := Head;
TextIQ.PuLLine("Number of maps remaining:" &

Natural'Image(Number..ofMaps));

-- discard the prolog files and the maps file
TextIO.Open(Query-.Prolog-.File, In_.File, Query-Prolog.s);
TextIO. Delete(Query-.Prolog-.File);
TextIO.Open(Candidate-Prolog..File, In..File, Candidate.Yrolog. s);
TextIO.Delete(CandidateProlog-.File);
TextIO. Open (Map s.Fil e, In_File, Maps...Filename.s);
TextIO.Delete(Maps_.File);

exception
when Too...Many-Maps =>

TextjO. PutLine("Th ere are too many maps to consider.");
TextIO. Put..Li ne(" Evaluate the candidate component manually.");
raise Too...Many...Maps;

end FindMaps;
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-- ModuleisGeneric is a function that returns true if a given specification is generic
-----------..-----------------------------------------------------------------------------------------------

with Obj3_Tokens; use Obj3_Tokens;
with Obj3_Lex, Obj3_LexIO;
with A-Strings;

function Moduleis_Generic
(FileName : in AStrings.AString) return Boolean is

Tok : Token;

begin
Obj3_LexIO.Open_Input(File_name.s);
loop -- to look for generics-start-token

Tok := Obj3_Lex.yylex;
exit when (Tok = GenericsStart_Token) or (Tok = End-ofnput);

end loop;
if tok = End_ofInput then

return False;
end if;
Tok := Obj3_Lex.yylex;
if Tok /= GenericsEnd_Token then

return True;
else

return False;
end if;

end Module-is_Generic;

with AStrings;
with SequencePkg;
with OpDefns_Pkg; use OpDefnsPkg;
with Get_Generic_Sorts, ModifySort;
with Types-andConstants; use Types-andConstants;

............................................................................................................

-- CheckGenericConsistency is a rather complex procedure to determine if the bindings
-- in a given map are consistent with the generic parameters/sorts of a candidate
-- component specification
............................................................................................................

separate (Find-Maps)
procedure CheckGenericConsistency is

type GenericAssociationRec is
record

OpName A_Strings.AString;
Position Natural;
GenericName A_Strings.AString;
GenPosn Natural;

end record;
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package Gen..Assoc-.Seq.Ykg is new Sequencej'kg(t => Gen ericAssociation..Rec);

Generic_Association..Seq GenAssoc..Seq...Pkg. Sequence;
Gene ricC on si sSeq OpDefns-Pkg.Gen..Consis-Rec;
Sort_ofInterest,
TheBinding,
CheckOp AStrings.A-String;
Dom-Sorts Op-Defns..Ykg.Pair.Sequence..Pkg.Sequence;
GenericFormalPosition,
Check_Position,
Numberof..Maps-.Removed,
Op_.Location,
GenericPosition,
Num_Generics,
Map-.Count Natural;
GenericParam-Seq Types and_Constants.AString..SeqPkg. Sequence;
GenericAssoc GenericAssociation_.Rec;
ABinding Op-DefnsPkg.GenericBinding;
LastMap Op-Defns-.Pkg.Map..Access;
Num-Associations Natural :=0;
Inconsistent,
Incomplete,
Bin ding_.Foun d,
Impossible Boolean;

begin --check-.generic~sonsistency
TextIO.PuL-Line("Checking generic consistency.");
GenericParamSeq :=Get_GenericSorts(Candidate_File);
NumGenerics :=Type s-.an dCon stants. AString..Seq-.Pkg.
Len gth(Gen eri c-Param_.Seq);
--Text-jO.PutLine("The candidate file has" & Natural'Image(NumGenerics)

-- & " generic parameter(s).");
Gen ericAssoci ation-.Seq :=GenAssoc..Seq...Pkg. Empty;
Tok yylex; -- a comma
Tok yylex; -- a left bracket
--TextIO.Put("Lexing Prolog associations )

loop
NumAssociations :=NumAssociations + 1;
Tok yylex; -- a left bracket
Tok yylex; -- an op name
Gen eri cAssoc. Op..Name := AStrings.to..a(yytext);
Tok yylex; -- a comma
Tok yylex; -- position of the parameter
Gen eric-Assoc. Position :=Natural'Value(yytext);
Tok yylex; -- a comma
Tok yylex; -- A generic parameter name
Generic..Assoc.Generic-.Name :

A...Stri ngs. Lowe r-to_Upper(A...Strin gs. to...a(yytext));
Tok yylex; -- a comma
Tok yylex; -- generic position
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Gen eric_Assoc. GenPosn :=Natural'Value(yytext);
Gen_Assoc_Seq..Ykg.Add(Generic..Assoc, Gen ericAs soci ation..Seq);
Tok yylex; -- a right bracket
Tok yylex; -- comma or right bracket
--Text-IO.Put(". ");
exit when Tok = Right..Bracket;

end loop; -- no more generic uses
--TextIO.NewLine;
--TextIO.PutLine("There were" & Natural'Image(Num Associations) &

1uses of generic parameters.");
A&.Map := Head;
Last_Map := Head;
Number-.ofiMapsRemoved :=0;
Map..Count: 0;
loop -- to examine each Map

MapCount := Map-Count + 1;
--Text-IQ.Put-Line("Examining Map:" & Natural'Image(Map_.Count));
Incomplete := False;
Inconsistent := False;
Impossible := False;
Generic...Consis..Seq :

Size => Num_Generics,
Bindings => (l..NumGenerics =>

(GenericName => AStrings.to-a("")
BoundTo => A_Strings.to.a("!!!"1))),

Length => NumGenerics);
-Initialize the consistency sequence with the actual names of the
-generic parameters and their sorts to !!! unbound.

for i in 1..Num-.Generics
loop

A_Binding.Generic_ Name
Type s-an d.Con stan ts.A- String-.Se qPkg. Fetch (Gen eri cParamSeq, i);
A...Binding.Bound_To := A...Strings.to.a("! !!"); --unbound
Generic...ConsisSeq.Bindings(i) := A&.Binding;

end loop; -- to initialize generic consistency sequence

-Now check each generic use in the stored component, filling in the
-bindings for the generic formal parameters as we go

for i in 1..NumAssociations loop --for each generic use in the spec
Check_.Op := GenAssoc..Seq_.Pkg. -- Get Op-.name that uses this generic
Fetch (Gen ericAs so ciation_S eq, i). Qp_.Name;
--Text_lO.PutLine("Checking generic consistency for: " &

-- Check....p.s);

-Was the op that uses this generic used in mapping
-to the query? If so, what is its location in the map?

for j in L..Op-Defn-.Se q-.Pkg. Length(A..Map. Map)
loop

Op...Location := j
BindingFound := False;
-- If the op was used in the mapping, to what sort was the generic
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-- parameter bound?
if CheckOp.s = OpDefn-Seq-kg.Fetch(A_Map.Map,

Op_.Location).pname.s then
-Get the position of the generic parameter in the op
-definition from the association list

CheckPosition :='en-Assoc-Seq-Pkg.
Fetch (GenericAssociation..Seq, i).Position;
Generic-.Formal-Position :=GenAssocSeqPkg.

Fetch(Generic_-Association_Seq, i).GenPosn;
if CheckPosition = 0 then -- its Range sort is generic

Sort_ofInterest := Op-.Defn...Seq-Pkg.
Fetch (AMap. Map, Op_.Location).RangeSort;

else -- one of the domain sorts was generic
Dom_Sorts := OnDefnScq-Pkg.
Fetch (AMap.Map, Or'_Location).Domain_Sorts;
for c in 1. .OpDefn_.Seq-Pkg.

Fetch (A-Map.M ap, OpLocation).Num_Parameters
loop

if CheckPosition = OpDefns-Pkg.PairSequencePkg.
Fetch(Dom..Sorts, c).Position then

Sort-of_-Interest : Op-DefnsPkg.PairSequencePkgr
Fetch (Dom-Sorts, c).SortName;

end if,
end loop;

end if;
Sort-ofInterest :=AStrings.Lower-toUpper(SorL-ofinterest);

GenericPosition := Gen ericForm a!-Positi on;
The_.Binding := Generic_Consis..Seq.

Bin din gsfGen eri cPosition). BoundTo;
if TheBinding.s = "!!! then -- it is currently unbound

Gene ri cCon sisSe q. Bin di ngs(Gen eri cPo sition). Boun dTo
Sort_ofInterest;

Binding-Found := True;
else --it is bound, but is it consistent

--with the current binding?
if The_-Binding.s 1=Sort_ofInterest.s then

Inconsistent :=True;
--TextIO. Put-Li ne(GenericConsi s-.Seq. Bindings

-- (GenericPosition).Generic_ Name.s &
-- is currently bound to "& The..Binding.s & .)

--Text-lO.PutLine("That is inconsistent with: "&

-- Sort_ofInterest.s &".)
else

Inconsistent := False;
Binding-Found := True;

end if;
end if;

end if;
exit when Binding-Found;

end loop;
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exit when Inconsistent;
end loop; -- for checking each generic use in the candidate spec

-- Now check for completeness
for j in 1..NumGenerics
loop

if Gen eric..Consi s..Seq. BindingsQj). Bound-To. s =!!"then

Incomplete :=True;
--Text_IO.Put.Line("No binding for generic parameter:
-- & Generic-.Con si s-Seq. Bin dingsQj). Generic_.Name. s);
--Text..O.Put_Line("This map is incomplete.");

end if;
end loop;

-Now check that each instantiation is with a predefined Sort
-We cannot instantiate a generic candidate with something other
-than a predefined sort - but that would be a nice extension

for j in 1..Num_Generics
loop

if not Predeined-.Obj..Sorts-.Pkg.Member(Modify-S.ort(
Gen ericCon si s-.Seq. BindingsQj). BoundTo),
Predef..Obj..Sorts..Set) then

Impossible := True;
--TextIO.Put.Line("No instantiation possible for:
-- & Generic..Consis-Seq.Bindings j).Generic_.Name.s);
--Text_IQ.Put_Line("This map cannot be used.");

end if;
end loop;

if Incomplete or Inconsistent or Impossible then
if A_.Map = Head then

Head := A_.Map.Next; -- discard the Map at Head position
else

LastL.Map := A..Map.Next; -- discard &..Map
end if;
Numbero.Maps_.Removed := Number.of..Maps..Removed + 1;
Number_of..Maps := Number_oL.Maps - 1;

else -- complete and consistent so let's save the bindings
A..Map.Generic Bindings := GenericConsis_Seq;
LastjL~ap := &..Map; -- update the last.map pointer

end if;
AMap := A..Map.Next; -- Let's try the next Map
--Text_IO.Put(". ");
exit when AMap = null;

end loop; -- to check each Map for generic consistency and completeness
TextIO.New-.Line;
Text_IO.Put_Line("Number of maps discarded:" &

Natural' Image(N umber.of.Maps_.Removed));

exception
when ConstraintError =>
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Text-I0.Put-Line("Aborted in CheckGeneric-.ConsistencyD);
end Check..Generic-Consistency;

-Get...Generic _Sorts extracts the names of generic parameters from a normalized file

with A_.Strings;
*with Text_10; use Text_1O;

with Obj3-.Lex-1O, ObJ3-.Lex, Ob,3_Lex_Dfa;
with Obj3...Tokens; use Obj3ff.okens;
with Type s.An -Con stants;

function Get_Generic_Sorts
(FileName :AStrings.A..String)

return Types..andConstants.AString-.Seq-Pkg. Sequence is

Tok Obj 3_Token s. token;
ASeq Type s.and Con stants.AString-.Seq-Pkg.Sequen ce;
Generics-.Flag Boolean :=false;

begin
--Text-IO.Put-Line("Entered GetGenericSorts!");
Obj3-Lex-IO.Open-jnput(FileName.s);
--TextI0.PutLine("Opened file: " & FileName.s);
ASeq :=Type s.an d-Con stan ts.A_String..SeqPkg.Empty;
loop

Tok :=Obj3-Lex.yylex;
exit when (Tok = GenericsStartToken) or (Tok =Endofjnput);

end loop;
loop

Tok := Obj3-.Lex.yylex;
exit when (Tok = GenericsEndToken) or (Tok =Endof..jnput);

Type s an d_Con stants. A-.String...SeqPkg.Add(
AStrings.to-a(Obj3..Lex-Dfa.yytext), A..Seq);
Generics-..Flag := true;

end loop;
Obj3..Lex-I0.Closejlnput;
if Generics-.Flag then

TextIO.Put("Generic parameters are: )
for i in 1. .Types-and_Constants.A_..String..Seq,.Pkg.length(A..Seq)
loop

Text_10.Put(Types-.and-Constants.A-String-.Seq-Pkg.
Fetch(A.Seq, i).s &

end loop;
TextIO.New_ Line;

end if;
return A-.Seq;

end GetGenericSorts;
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-- Test..Maps

with Term-definition_Pkg; use Term-.definitionP.kg;
with OpDefns-Pkg;- use Op...Defns-Pkg;
with Formal.,Spec..Object; use FormalSpec..Object;
with A...Strings; use A_.Strings;
with Find_Correlation, PerformTest, GetComponentName, Show_Map;
with Text_1O;

procedure Test-.Maps
(Test..Set in Test_.SetDef;
FormalSpec in FormalSpec..Def;
IQ..List in 10_List_Def,
QueryFilename in A..Strings.A&String;
CandidateFfilename in AStrings.k..String;
BestScore in out Natural) is

A.Map .Map..Access;

A_.Term, NewTerm TermAccess;
I0...Pair I0...List_.Def;
Component.Name A-.Strings.AString;
Score,
Best_.Map,
Map-..Count .Natural;

begin
-Let's start by getting a correlation between the sorts in the query
-and the sorts in the component. The correlation could be different
-for each map so we must have a separate one for each map

Text-IO.New-Line;
Text_10.Put-.Line("Correlating Sorts between Query and Maps.");
A.Map new Maps;
A-.Map Formal_.Spec.CompMaps;
loop

exit when AMap = null;
FindCorrelation(Test-Set, Form alSpec. Op-.Defn s, A..Map);
AMap := A-Map.Next;

end loop;

-Now we must get the name of the component defined in the candidate file
-in case there are generic parameters to instantiate

if Formal-Spec. Comp-Maps.GenericBindings. Length > 0 then
Component_Name :=Get-.Cmponent _Name(Candidate_.Filename);

else
Component_Name :=AStrings. Empty;

end if;

-Here we must loop through each of the possible maps of a given
-component, invoking OBJ to check the similarity of the query outputs
-vs the component outputs
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Text-IO.New..Line;
TextO. Put.Line(CTe sting the maps...");
TextIO.NewLine;
A.Map := Form alSpec.Comp. -.Maps;
BestScore :=0;
Map .Count := 0;
BestMap :=0;
loop

exit when &.Map = null;
Map...Count := Map-..Count + 1;
TextIO.PutC'Map:" & NaturalImage(Map..Count) & "Score:");

Perform -TX st(Candidate.ffilename, ComponentName, Formal-.Spec,
A..Map, Test..Set, IQ..List, Score);

Textj. Put..Lin e(NaturalIm age (Score) & ")
if Score >= BestScore then

Best_.Score := Score;
BestMap :=Map-..Count;

end if;
&..Map := A_.Map.Next;

end loop;
Text-IO.NewLine;
Text_-IO.Put.Line("Best map is *" & NaturalImage(Best.Map));
ShowMap(Best-.Map, Formal-Spec);

end Test_Maps;

-Find-Correlation determines a correlation between the sorts of a query and the sorts of
-a candidate component

with Term-definitionPkg; use Term~definition_Pkg;
with Op..DefnsPkg; use Qp-.Defns-.Pkg;
with Types-.and..Constants; use Types...andConstants;
with A-..Strings; use AStrings;

procedure Find-.Correlation
(Test.Set :in TestSetDef,
Query..Ops :in 0p-Defn..Seq...Pkg.Sequence;
&..Map :in out Map.Access) is

A.Range_.Sort :AStrings.A-.String;
Location :Natural;

begin
__ make a list of sorts for this map like the one in the test set
AMap.SortCorrelation := new Correlation.jRec

(Size => Test-.Set.SortIndex'Last);

-first fill the array with the same sorts as the test set
-this takes care of all of the predefined sorts

for i in TestSet.SortIndex'Range
loop



AMap.Sort_.Correlation.SortCorrelation(i)
&Strings. to..a(Test-Set. Sortj nde x(i). Sort_Name. s);

end loop;

-Now check the range sorts of each op-definition in the query
-and find the corresponding sort in the candidate map

for i in l..Op-Defn-.Seq..Ykg.Length(Query..Ops)
loop

A..Range...Sort :=OpDefn..Seq...Pkg.Fetch(Query_.Ops, i).Range_.Sort;
if not Predefined-Obj..SortsPkg.Member(A...RangeSort,

PredefObj.Sorts..Set) then
for x in Test..Set.SortIndex'Range
loop

if ARangeS.ort.s = TestSet.SortIndex(x).SortName.s then
Location :=x;
exit;

end if;
end loop;
A...Map. SortCorrelati on .SortCorrelation (Location) A_ Strings.to..a(
Op..Defn..Seq..Pkg.Fetch(A_.Map.Map, i).Range-Sort.s);

end if;
end loop;

end FindCorrelation;

-- ShowMap shows the correlation between operators of two specifications given a map

with Text_10, UncheckedDe allocation;
with Op_.Defns_Pkg, Formal__Spec..Object;
use Op_.Defns~kg, Forma..Spec-.Object;

procedure Show-.Map
(Map_.Count in Natural;
FormalSpec in FormalSpec_.Def) is

AMap :Map-.Access;

procedure Free is new UncheckedDeallocation
(Object => Maps,
Name => Map.Access);

begin
TextIO.NewLine;
if Map._Count = 0 then

Text_1O.PutLine('No Correlation");
else

&.Map := new Maps;
A_Map :=Formal..Spec.Comp..Maps;
for x in i..MapCount-i
loop

A_.Map := AMap.Next;
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end loop;
for x in l..Op-DefnSeq-Ykg.Length(Formal-Spec.Op-Defns)
loop

Text-IO.Put(C & Op-.Defn-Seq-Pkg. Fetch
(Form alSpec.O0p_Defns, x).Op-Name.s & "-

TextI. Put-Lin e(O pD efnSe qkg. Fetch (&Map.Map, x) .OpName.s);
end loop;
Free(A...Map);

end if;
end ShowMap;

-PerformTest invokes OBJ3 to compare the output terms of the query with reduced
-terms in the candidate component

with Type sand-Con stants, UnixPrcs;
with Text-10; use Text_10;
with FormalSpec..Object; use FormalSpec.-.Object;
with Term...DefinitionPkg; use TermDef'inition_.Pkg;
with A -Strings; use A_Strings;
with Op_.DefnsPkg; use OpDefns_.Pkg;
with Print,_Term, CleanOutput_File, Evaluate-.Results;
with Modify_.Sort, Tran sform..Term;

procedure PerformTest
(CandidateFilename :in AString;
Component_Name in AString;
Formal_Spec :in Formal_.Spec-.Def;
TestMap in Map.Access;
TestSet in TestSetDef;
IOList in 10..List..Def;
Score out Natural) is

Temp...Script_.Name,
Temp...ShelIName AStrings.A-.String;
ObjjI'em p-File,
Obj...ShellFile,
New-..File Text_1O.FilefType;
CommandLine,
NewName AStrings.A..String;
Temp :Integer;
NumConstants Natural;
An_-10_Rec :10_Lis..Def,
Domain_Result,
Candidate-Input :Term_.Access;
Comma :Boolean;

begin
Temp-.Script..Name :=AStrings.to...a(Candidate_Filename.s & ".script. obj');
TextIO.Create(ObjjTemp.File, Out_File, Temp...ScriptName. s);
CommandLine := A-Strings. to..a("ch mod 777 " & Temp-ScriptName.s);
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Temp :=Unix..Prcs.Spawn(CommandLine);
Text-IO.PutLine(Obj_Temp..File, "in newlisp.obj");
Text-.I0. Put-.Line(ObjTemp..File, "in " & Candidate..Filename. s);
-- must instantiate generic here.
if Test...Map.Generic-.Bindings.Length > 0 then

Text-IO.Put(Obj.Temp..File, 'make " & Component_Name.s & "-NEW is "&

Component_Name.s & "T');
Comma :=False;
for i in 1..Te st..Map.Generic-Bindings. Length
loop

if Comma then
Text-IO.Put(ObL-TempFile, " )

end if;
Comma :=True;
TextI0.Put(ObL-TempFile,

Test_.Map.Generic-Bindings. Bindings(i). Bound-to. s);
end loop;

end if;

-- need to "openr ." and declare some constants
Text-jO.PutLine(Obj.Temp..File, "openr .)

-- declare constants here
for i in Test..Set.Sort_Index'Range
loop

NumConstants :=Const-Seq..Pkg. Length(TesLSet. Sort,_Index(i). Con stants);
if Num_Constants > 0 then

for j in 1..Num-Constants
loop

Text_IO.Put_Line(ObLffemp..File, "op " &
Const..Seq...Pkg.Fetc(TestSet.SortIndex(i).Constants, j).s &

.1:-> " & Modify...Sort(Test..Map.Sort_.Correlation.
SortCorrelation(i)).s &"

end loop;
end if;

end loop;
TextO. Put_Line(Obj..'Iemp..File, "close");
-- now enter the reduction loop
TextO. Put_Line(Obj.Temp..File, "ev (do-red-loop)");
-- now submit the terms from the IQ..List, end each with a
An_10_Rec new 1OPairRec;
An-IORec I0.List;
loop

exit when An_10_Rec = null;
Tran sformTerm (AnjIO-Rec. Output, DomainResult,

Formal-Spec.Op-.Defns, Test_.Map, Test-.Set);
Transform_.Term(AnjO...Rec. Input, Candidateilnput,

Form alSpec.Op..Defn s, Test_.Map, Test-..Set);
Text....I.Put(Obj..TempFile, "prove(");
Print..Term(ObjTemp-.File, CandidateInput);
Text-jO.Put(Objff.emp..File, ", ");
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Print..Term(Obj..Temp-.File, Domain_.Result);
TextI0.PutLine(Obj..Temp..File,").;
An-1.0-.Rec :=An_10_Rec.Next;

end loop;
-end the reduction loop and quit

TextJ0.PutLine(Obj..emp..File, .)

TextI0.PutLine(Obj.Temp..File, "q");
Temp_.ShellName :=A_-Strings.to-.a(CandidateFilename.s & ".shell");
TextTO. Create(Obj-Shell-File. Out..File, Temp..Shell...Name. s);
Text_0. Put_.Line(Obj..ShellFile, "obj <$1 >$2");
Command_Line A=...Strings.to..c("chmod 777 "& Temp_.Shell-Nane.s);
Temp :=UnixPrcs.Spawn(Command-Line);
-- Add ".output" to the file name
New name A=...Strings.to .a(Candidate-.Filename.s & ".output");
Command_Line :=A_Strings.to-.a(Temp..Shell_Name.s & "&

Temp_.Script_.Name.s & " & Newjiame.s);
-- Text_IO.New_Line;
-- TextI0.PutLine("Running OBJ3 task to compare results.");

Temp UnixPrcs.Spawn(Command-.Line);
Temp Unix...Prcs.Spawn((A...Strings.to.a("cat " & New_name.s)));
-- Text_I0.PutLine("Finished OBJ3 task.");
Text-j .Del ete(Obj.Temp..Fil e);
TextI0.Delete(Obj-ShellFile);
CleanOutput..File(New_.Name);
-- must evaluate the results here
EvaluateResults(New..Name, Score);
TextI 0. Open (New_File, In_File, New_Name.s);
Text_10.Delete(NewFile);

end Perform....est;

-- Modify-..Sort changes some special case sort names to their internal (to OBJ3) form

with AStrings; use A_.Strings;

function Modify-..Sort
(Sort A_.String) return A_String is

Sorti A-.String;

begin
if UpperjtoLower(Sort).s = "nznat" then

elereturn to..a("NzNat");

if Upper-.to-.Lower(Sort).s = "nzint" then
return to..a("Nzlnt");

else
Sorti := upper...ojower(Sort);
Sortl.s( 1) :=o...upper(Sortl.s(l));
return Sorti;

end if;



end if-,
end Modify...Sort;

-Get..Component..Name extracts the name of a component (object) from a normalized
-specification file, for the purpose of generic instantiation

with Obj3_Tokens; use Obj3...Tokens;
with Obj3_.Lex, Obj3_.Lex_10I, Obj3-.Lex-.Dfa;
with &..Strings;

function GetComponent_Name
(File_.Name :in A..Strings.&.String) return A..Strings.A_.String is

Tok Token;
NormFilename,
Component_Name A_Strings.AString;

begin
Norm-.Filename :=AStrings."&'(File name, ".norm");
Obj3-.LexIO.OpenInput(NormFilename. s);
loop -- to look for MODNAME_STARTTOKEN

Tok :=Obj3_.Lex.yylex;
exit when (Tok = MOD-Y.AME...STARTTOKEN) or (Tok =Endofjnput);

end loop;
Tok :=Obj3-.Lex.yylex;
Component-Name := AStrings.to..a(Obj3-.Lex..Dfa.yytext);
Obj3-.Lex-IO.close.jnput;
return ComponenL..Name;

end GetComponent_.Name;

-Transform..Term transforms the term from the 1/O list to the domain of the candidate
-component

with Text_JO;
with Term-definition..Pkg; use Term_definition_.Pkg;
with OpDefnskg; use Op...DefnsPkg;
with Types-.and-Constants; use Types..andConstants;
with AStrings; use AStrings;
with Subsort;

procedure Transform..Term
(FromTerm in Term..Access;
TofTerm in out Term-..Access;
FromMap in Op,.Defn...Seq...Pkg.Sequence;
To..Map in MapAccess;
Test_Set in Test_Set..Def) is

SignatureMatch Boolean :=False;
Domain-Match Boolean;



FromOpDef OpDefn_Type;
Location,
Sort_Loc,
Z Natural;
Subterm TermAccess;
First,
Second AStrings.AString;

begin
--TextIO.PutLine("Transforming: " & FromTerm.OpName.s & ":" &
-- FromTerm.Range_Sort.s & " with" &
-- Natural'Image(FromTerm.NumArgs) & " args.");
-- Make a new empty term
To_Term := new Term;

if FromTerm.Signature > 0 then -- we know its signature already
SignatureMatch := True;
Location := FromTerm.Signature;

else
-- Let's look for it among the op-definitions

for x in L..OpDefnSeqPkg.Length(FromMap)
loop

FromOpDef := OpDefnSeqPkg.Fetch(FromMap, x);
if (From_Term.OpName.s = FromOpDef.OpName.s) and

(FromTerm.RangeSort.s = From_Op_Def. RangeSort. s) and
(FromTerm.NumArgs = FromOpDef.NumParameters) then

DomainMatch := True;
for y in 1..FromTerm.NumArgs
loop

First := UppertoLower(FromTerm.Arguments(y).RangeSort);
Second UppertoLower(PairSequencePkg. Fetch

(FromOpDef. Domain_Sorts, y).Sort_Name);
if (First.s /= Second.s) and then not Subsort(First, Second) then

DomainMatch := False;
end if;
A_Strings. Free(First);
A_Strings.Free(Second);

end loop;
if DomainMatch then

Signature-Match := True;
Location := x;
exit;

end if;
end if;

end loop;
end if;

-- Maybe the term is one of the predefined terms
if (not SignatureMatch) and (From Term.Num-Args > 0) then

-- this is a predefined term
ToTerm.OpName := AStrings.to-a(FromTerm.OpName.s);
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T"oTerm. Ran ge..Sort A.S tri ngs. to..a(From_Te rm. Ran ge_Sort. s);
To...Term.Num-.Args FromTerm .Num-.Args;
for x in 1.. From.Term.Num-Args
loop

Transform-.Term(FromTerm .Arguments(x), Subterm,
From_.Map, To_.Map, Test..Set);

To_.Term.Arguments(x) new Term;
Toff.erin.Arguments(x) Subterm;

end loop;
end if;

-- Let's check if it's a constant
if (not Signature-.Match) and (From..Term.Num..Args = 0) then

-- this is a constant
--Text_IO.Put~line(FromTerm.OpName.s & " is a constant with sort

-- & From_-Term.Range..Sort.s);
ToTerm.Op-.Name :=From..Term.OpName;
To-erm.Num..Args 0;
for i in Test-Set.SortIndex'Range
loop

if Upper..to..Lower(From-Term .RangeSort). s=
Upper-.to...Lower(Test-.Set.Sort_Index(i).SorLName).s then

Sort..Loc := i
exit;

end if;
end loop;
ToTerm.Range-.Sort := A-Strings-to-.a(ToMap.Sort-Correlation.

Sort_.Correlation(SorLjoc).s);
end if;

-- Perhaps we found the map
if Signature_.Match then

--Text-IO.Put-Line("Found the signature for: " & From_.Term.OpName.s);
To-Term .Op-.Name := AStri ngs. toa(OpDefnSeq_Pkg.Fetch (To-Map. Map,

Location). OpName. s);
--Text_IQ.PutLine("Corresponding Op_.Name is: " & To_Term.Op_.Name.s);
To-.Term.Range-.Sort :

A-.Stri ngs. to-a(O p_Defn.S e qPkg. Fetch (To.M a p. Map,
Location). Ran ge-Sort. s);

ToTerm.Num-.Args :=From.Term .Num_.Args;
To..Term.Signature :=FromTerm .Signature;
for i in 1.. FromTerm.Num-.Args
loop

Z := Pai r.Seq uence-.Pkg. Fetch (Op-.Defn...Seq-.Pkg. Fetch (ToMap.Map,
Location). Domain _Sorts, i).Position;

Transform-.Term(From-Term.Arguments(Z), Subterm,
From..Map, To_.Map, Test..Set);

ToTerm.Arguments(i) :=new Term;
ToTerm.Arguments(i) :=Subterm;

end loop;
end if;



end TransformTerm;

-- Subsort checks predefined subsort relationships to support term transformation

with TextIO;
with AStrings; use AStrings;

function Subsort
(A, B : A_Strings.AString) return Boolean is

Result .Boolean := false;

begin
--TextIO.PutLine("Is " & A.s & " a subsort of " & B.s & "?");

if (Upper-toLower(A).s = "nznat") and (Upper-toLower(B).s = "nat") then
Result := true;

end if;
if (Upper_to_Lower(A).s = "nat") and (UppertoLower(B).s = "int") then

Result := true;
end if;
if (UppertoLower(A).s = "nznat") and (Upper-toLower(B).s = "int") then

Result := true;
end if;
if (UppertoLower(A).s = "nzint") and (Upper toLower(B).s = "int") then

Result := true;
end if;
if (Upperto_Lower(A).s = "nznat") and (UppertoLower(B).s = "nzint") then

Result := true;
end if;
if (Upperto_Lower(A).s = "zero") and (Upper-toLower(B).s = "nat") then

Result := true;
end if;
if (UppertoLower(A).s = "zero") and (Upper-toLower(B).s = "int") then

Result := true;
end if;
return Result;

end Subsort;

-- Evaluate Results determines how many of he equivalence checks were positive out
-- of the number tried

with TermLex, TermLexIO, Term_LexDfa, TermparseTokens, A_Strings;
use Term_Lex, Term_Lex10, Term_LexDfa, TermparseTokens, A_Strings;

procedure EvaluateResults
(ResultFile in AString;
Score out Natural) is
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Tok Termparse-Tokens.Token;
Num_Tests,
Num_Successful Natural :=0;

begin
TermLexIO .Open-Input(Result-File.s);
Tok :=yylex; -- result token
while Tok /= End~of..nput
loop

Num-Tests :=NumTests + 1;
Tok :=yylex; -- Sovt token
if yytext ="Bool" then

Tok :=yylex; -- Term head
if yytext = "true" then

NumSuccessful := NumSuccessful + 1;
end if;

end if;
loop

Tok := yylex;
exit when (Tok = ResultStartToken) or (Tok =EncLInput);

end loop;
end loop;
TermLexI0.Closejinput;
Score := (Num..Successful * 100) / Num..Tests;

end Evaluate..Results;

6. Surpport Code

-- PrintTerm prints a term to the specified location

with TextjO; use Text_10;
with Term-Definition_Pkg; use TermDefinition..Pkg;

procedure Print_Term
(Out..File :in File...Type;
ATerm :in Term-Access) is

begin
if ATerm /= null then

Put(Out_.File, ATerm.Op..Name. s);
if ATerm.Num...Args > 0 then

Put(QutFile, "(");
for i in 1. .A.Term.Num.Args
loop

Printff.erm(Out..File, ATerm.Arguments(i));
if i /= A..Term.NumArgs then

put(OutFile, " )

end if;
end loop;



Put(Out-File, );

end if;
end if;,

end PrintTerm;

-- Types..And_Constants defines useful constants and data structures

with AStrings;
with Set_Pkg;
with Sequence-Pkg;
with Text_10; use Text_10

package TypesAndCor.. ants is

Max_Maps constant :=50;
Spec_..FilenamejI'ype A...Strings.A...String;
Op...Name_.Type A-.Strings .A-.String;

function Equa](X, Y : AStrings.A..String) return Boolean;

package Predefined-Obj..Sorts-Pkg is new Set..Pkg
(t => AStrings.A String,
eq => Equal);

package OpSetPkg is new Set..Pkg
(t => AStrings.A..String,
eq => Equal);

PredefObj.SortsSet :Predefined-Obj..SortsPkg.Set;

package A...String-.SeqPkg is new Sequence..Pkg
(t => A..Strings.A..String);

end Type s.And- Con stants;

package body Types-And-Constants is

Sort_File FileType;
SortName String(l..32);
NameLength Natural;

function Equal(X, Y :AStrings.A String) return Boolean is
Result :Boolean;

begin
Result :=Xs = Y.s;
return Result;

end Equal;

procedure Print..AString(X :in AStrings.A..String) is
begin



Text_1O.Put(X.s &
end PrintAString;

procedure Scan_Set is new
Predefined..Obj..Sorts-.Pkg.Scan(generate => Prin&..&String);

begin
Pre defined-Obj..Sorts-Pkg. Empty( Predef ObjSortsSet);
Te xtj .Open (Sort_.Fil e, In...File, "predefined-sorts');
while not End..ofFile(Sortfile)
loop

Text_lO.Get_Line(Sort_File, Sort_Name, NameLength);
PredefinedObj..Sorts...Pkg.Add(AStrings.to_a(Sort- name( 1..Name_Length)),

PredefLObLSorts..$et);
end loop;
TextIO .Close(SortFile);
--TextIO.Put("Predefined sorts are:
--ScanSet(Predef...ObLSorts-Set);
--Text-IO.NewLine;

end Type s...AdConstants;

-- Op...DefsjPkg defines op definition structure and Maps structure

with A...Strings, Sequence-.Pkg;

package Op-DefnsPkg is

type Sort_Position_Pair is
record

SortName :AStrings.A..String;
Position :Natural;

end record;

package Pair-Sequencej'kg is new SequencePkg(t => SortPositionPair);

type QpDefn..Type is
record

Op-.Nanie :A-.Strings.A-String;
Num-Parameters :Natural;
Range-Sort : &Strings.AString;
DomainSorts :PairSequence..Pkg.Sequence;

end record;

package Op-.Defn-.Seq_.Pkg is new Sequence.YPkg(t => Op...Defn...Type);

type GenericBinding is
record

Generic-.Name A-&Strings.A.&String;
Bound_To :A..Strings.AString;

end record;



type Array-.Type is array(Positive range <>) of Generic~inding;

subtype Size_.Range is integer range 0..100;

type GenConsis_Rec(Size :Size-..Range :=10) is
record

Bindings Array-Type(1.. Size);
Length SizeRange :=0;

end record;

type Correlation.Array is array(Positive range <>) of A...Strings.AString;

type Correlation..Rec(Size :Size-..Range :=10) is
record

Sort_Correlation :CorrelationArray(1.. Size);
end record;

type CorrelationAccess is access CorrelationRec;

type Maps;

type Map.Access is access Maps;

type Maps is
record

Map 0 p-DefnsPkg. Op..Defn...Se-Pkg. Sequence;
Generic-.Bindings :Gen_Consis_Rec;
SortCorrelation :CorrelationAccess;
Next :MapAccess :=null;

end record;
end Op-.Defns-.Pkg;

-- TermDefinition-.Pkg defines terms , test set, and 1/0 list

with AStrings, Sequence_.Pkg;

package Term...Definition..Pkg is

Max_.Arguments :constant Natural :=10;

type Term;
type TermAccess is access Term;
type Access.Array is array(l..Max_.Argunients) of Term-.Access;

type Term is
record

Op...ame AStrings.A String;
Range-Sort AStrings.AString;
Num_.Args Natural :=0;
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Signature Natural := 0;
Arguments Access.Array := (l..MaxArguments => null);

end record;

package ConstSeqPkg is new SequencePkg(t => AStrings.AString);

type Sort_IndexInfo is
record

Sort_Name A_Strings.AString := A_Strings.to_a("!);
Start Natural 0;
Stop Natural 0;
Constants Con3tSeq_Pkg.Sequence := Const_Seq_Pkg.Empty;

end record;

type SortIndexArray is array(Positive range <>) of Sort_Index_Info;

package Term_SequencePkg is new SequencePkg(t => TermAccess);

type Test_Set_Rec(Size : Natural := 10) is
record

Sort_Index SortjndexArray(1..Size);
TermList TermSequence-Pkg.Sequence

TermSequencePkg. Empty;
end record;

type Test_Set_Def is access Test_Set_Rec;

type IO_Pair_Rec;
type IOListDef is access 10_PairRec;

type JO_PairRec is
record

Input Term.Access;
Output : Term.Access;
Result A_Strings.A_String;
Next :IO_ListDef;

end record;
end TermDefinitionPkg;

C. INPUT SOURCE FOR ANALYZERS AND PARSERS

1. OBJ3 Lexical Analysis

-- Definitions of lexical classes
-- NOTE: Changes to standard OBJ3 are:

A Module ID must be all capitals and may contain digits or
the minus sign.

A Sort ID must start with a capital letter, followed by lower
case letters, digits, or the minus sign.
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-- Identifiers such as variable names and operation names will
-- be recognized as either Module-ID, SortjD, or Symbol.

Digit [0-9]
Int [-+]?(Digit)+
IntList (Int)[ 1*
Nat (Digit)+

*Letter [a-zA-Z]
Alpha (Letter) I (Digit)
Blank [V1
Syrn [-_.*=+ I:P>!#&%--AZ-]
EndExpr (Blank)"."
ModuleID [A-Z][-A-ZO-9]*
SortlID [A.Z1[.a-zO-9]*
GenericSort "l.([)*)
OpnameID [a-z1[lia-zO-9]*
OpsComment "***(operations"
ShortComment .***q[A(].*

StartComment -"***C
Attribute assoc I comm I idem I memo I intrinsic
IdAttribute id: Iidr:

StratAttr strat[ 1*"("(IntList)+"Y
PrecAttr prec[ ]*Nat)

obj return(OBJTfOKEN);
is return(IS-TOKEN);
endo return (END O-TO KEN);
th return (TH-.TO KEN);
endth return(ENDTH-.TOKEN);
Solt return(SORT-TOKEN);
OP return (OP..TO KEN);
ops return(OPS..TOKEN);
op-as return(OP_.ASTQKEN);
protecting return (PROTECTING_TOKEN);
extending return(EXTEND ING_TO KEN);
using return (US INGTOKEN);
with return (WITH-TOKEN);
and return(AND-TOKEN);
din return (DFNTO KEN);
subsort return (SUBSORTTO KEN);
subsorts return(SUBSORTS-TOKEN);
var return( VAR-TOKEN);
vans return( VARS-TOKEN);
for return (FOR_.TOKEN);
if return(IF -OKEN);
eq return (EQTO KEN);
oq return (CQ-.TOKEN);
bq retUrn(BQ-TOKEN);
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beq return(BEQ..TOKEN);
cbeq return(CBEQTOKEN);
cbq return(CBQ-TOKEN);
Of return(OFV_.TOKEN);
as return(AS..TOKEN);
view return(VIEW-TOKEN);
from return(FROM...TOKEN);
to return(TO__.TOKEN);
endv return(ENDV...OREN);
bsort return(BSORTTOKEN);
poly return (POLY....OKEN);

"Mops"return(OPS-START.YOKEN);
"! !end-ops" return(OPS-END_.TOKEN);
1 !axioms" return(AXIOMS...STARTTO KEN);
1 !end-axioms" return(AXIOMSEND_TOKEN);
I! !sorts" return(SORTSSTARTTOKEN);
!!!end-sorts" return(SORTSENDTO KEN);
"!! !principal- sort" return (PRINCIPAL-S ORTSTART -TOKEN);
"! end-principal- sort" return(PRINCIPAL..SORTENDTOKEN);

1 !prolog" return(PROLOG-.STARTT OKEN);
1! !end-prolog" return(PRO LO GENDTO KEN);
'!!!generics" return(GENERICSSTARTTO KEN);
'!end-generics" return(GENERICS..ENDTOKEN);

'T.!module-name" return(MO D-.NAM ESTARTTO KEN);
!end-module-name" return(MOD-.NAME-.END_TOKEN);

(Ops~omment) return(OPS-COMMENT..TOKEN);
(Attribute) return(ATTRIBUTETO KEN);
(IdAttribute) return(ID-.ATTRIBUTE..TOKEN);
(GatherAttr) return(GATHER..ATTRTO KEN);
(StratAttr) re turn(STRAT-.ATTRTO KEN);
(PrecAttr) return(PREC-.ATTRTO KEN);
(GenericSort) return(GENERIC-SORT_.TOKEN);

return(U);

"C, return('();
T, return(T);

71' return(')';
1" return('(');

re turn(' );
returnC,');

:9,9 return(':');
returnC+');

"*'* return('.');

'< returnC<');
"->. return (ARROW-TOKEN);

It :: "return(DOUBLE-.COLONJffOKEN);
(ShortComment) return(SHORT-COMMENTTO KEN);
(StartComment) return (STARTSC 0MM ENTTO KEN);
(ModuleID) return (MO DULE-JD..OKEN);
(SortID) return(SORT_1D-TO KEN);
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(OpnameID) return(oP-ID-TOKEN);
(Sym) return(SYMBOL-3OKEN);
(EndExpr] return(ENDEXP&-TO KEN);
[\n] flinenum;)
(Blank)* null;

with Text_10; use TextjO;
with uenv;
with Obj3...Tokens; use Obj3Tfokens;

package Obj3_Lex is

procedure lexit;
function yylex return token;

end Obj3-.Lex;

package body Obj3_Lex is

procedure lexit is

Tok :Token;

begin -- lexit
Obj3_LexI0.Openjnput(U..Env.argv(1).s);
loop

Tok :=YYLex;
TextIO.Put(Obj3..Lex_Dfa.YYText);
Text-IO.NewLine;
exit when Tok = End-of Input;

end;

end lexit;

end Obj3_.Lex;

2. Predefied Term Lexical Analysis

-- Definition for a lexical analyzer for the predefined terms used in the test-set generator

Ident [a-zA-Zl[a-zA.ZO-9]*
Digit [0-9]+
Blank [\t\n]



"predef:" retiirn(Predef);
"constants:" return(Constants);
"numterms:" return(Numterms);
"name:" return(Name);
"numargs:" return (Numargs);

return (Gen eri c..p);
WIent) return (Ide ntifier);
(Digit) return(Number);
(BlanIK)* null;

with Text..JO; use TextjO;

with u..env;

package predef~jex is

subtype YYSType is integer;
YYLVaI, YYVal : YYSType;

Syntax-..Error : exception;

type Token is
(EndLfnput, Error, Predef, Numterms, Name, Numargs, Constants,
Generic_.Op, Identifier, Number);

procedure predeflex;
function yylex return token;

end predefjex;

package body predef~jex is

procedure predeflex is
Tok : Token;

begin -- predeflex
pre d eflex_i o.O0pen-In put(U...Env. argv(1). s);
loop

Tok := YYLex;
TextIO.Put(predejex.dfa.YYText);
TextIO.NewLine;
exit when Tok = End.ofjnput;

end loop;
end predeflex;

end predefiex;



3. Prolog Output Lexical Analysis

-- A lexical analyzer for the prolog output generated by the Findmappings
-- Prolog executable.

Ident [a-zA-ZI[a-zA-ZO-9]*
Digit [0-9]+
Blank [\t\n]

"[generic" return(Start-Generics);
"end]" return(En dofLMap);

return(Left_Bracket);
return(Comma):
return(RightBracket);

(Ident) return(Identifier);
(Digit) return(Number);
(Blank)* null;

with TextIO; use Text IO;

with u-env;

package prolog.lex is

subtype YYSType is integer;
YYLVal, YYVal : YYSType;
SyntaxError : exception;

type Token is
(EndOfInput, Error, Start_Generics, End_ofMap,
LeftBracket, RightBracket, Comma, Identifier, Number);

procedure plex;
function yylex return token;

end prolog_lex;

package body prolog-lex is

procedure plex is

Tok : Token;

begin -- plex
prolog-lex-io.OpenInput(UEnv.argv(1).s);
loop

Tok := YYLex;

203



Text_1O.Put(prolog-lex-dfa.YYText);
Text-IO.New-Line;
exit when Tok = End-Lbnput;

end loop;
end plex;

end prolog-lex;

4. Term Lexical Analysis

-A lexical analyzer for obj output terms
-NOTE: Changes to standard OBJ3 are:

-- Op names must begin with a lower case letter, i.e.
-- [a-z][a-zl-9]*

Digit [0-9]

Nat (Digit)+
Float [-]?(Digit) +"."(Digit) +
Blank [ \t\n]
EndExpr (Blank)"."
SortID [A-ZI[-a-zA-Z0.9]*
Qualified "."(SortIDJ
OpnamelD [a-z][-a-z0-9]*

if (YYText..Val := A...Strings.to-.a(term-lex..dfa.yytext);
return (I FTOKEN);)

then (YYText..Val := AStrings-to-.a(term-lex..dfa.yytext);
return(THEN_-TOKEN);)

else (YYTextVal := AStrings.to-a(term-ex..dfa.yytext);
return(ELSE..TOKEN); )

fi (YYText_Val := A-.Strings.to-a(term-lex..dfa.yytext);
return (FI. -TOKEN);)

!!result" (return(RESU LT-START-TO KEN);
!Vend-result" (return(RESULTENDJOKEN);)
.err!!" (return(ERRORTOKEN);)

IT' (return('(');)
IT(return(');

(return(',');)
(YYText..Val := AStrings.to-a(term-lex-dfa.yytext);

return(EQUIV_.TOKEN);
"=1=" (YYText..Val := AStrings,.to-a(term-ex-.dfa.yytext);

return(NOT-.EQUIV..TOKEN);)
(SortID) (YY~ext-.Val := AStrings.to..a(termjlex.dfa.yytext);

return(SORTIDTOKEN);
(Qualified) null;
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(NegInt) (YYTexty.al :=AStrings.to..a(termjex..dfa.yytext);
return(NEGINTTOKEN);)

(Float) tYYText_Val :=A_Strings.to..a(termiex..dfa.yytext);
returnCFLOAT_-TOKEN); )

(Nat) PYYText-ValV:= A_Strings.to...a(termjlex-.dfa.yytext);
return(NATTOKEN);)

(OpnameID) (YYText_.Val := AStrings.to...a(termj ex...dfa.yytext);
return (0P-D-TOKEN); )

(EndExpr) (return(ENDEXPR_TOKEN);)
(Blank)* null;

with Text_10; use Text_1O;
with uenv;
with termparse-.tokens; use term parse..tokens;
with AStrings;
with term-lex-dfa; use term_lex..dfa;

package termjlex is

YYText_Val AStrings.A_.String;
procedure lex-term;
function yylex return token;

end term-lex;

package body termilex is

procedure lex-term is

Tok Token;

begin lex-term
term-]lex-io. Open-Input(U-.Env. argv(1). s);
loop

Tok :=YYLex;
TextIO.Put(term-jex-dfa.YY~ext);
Text..1O.New-.Line;
exit when Tok = End..ofjnput;

end loop;
end lex..term;

end termjlex;

5. Term Parser

--AYacc definitions for OBJ3 term parsing
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%token IF-TOKEN;
%token THENTOKEN;
%token ELSE-TOKEN;
%token FITOKEN;
%token RESULTSTARTTOKEN;
%token RESULTENDTOKEN;
%token ERRORTOKEN;
%token ENDEXPRTOKEN;
%token OPIDTOKEN;
%token NATTOKEN;
%token FLOAT-TOKEN;
%token NEGINTTOKEN;
%token EQUIVTOKEN;
%token NOTEQUIVTOKEN;
%token SORTID_TOKEN

%with TermDeinitionPkg
%use TermDefinitionPkg
%with AStrings;
%use AStrings;

type key-type is (Rterm, RtermList, Op, Empty);

type YYSType(Key : Key-Type := Empty) is
record

case Key is
when Rterm =>

Term-Val TermDefinitionPkg.TermAccess;
when RtermList =>

Count : Natural;
TermListVal : TermDeinitionPkg.AccessArray;

when Op =>
OpName A_Strings.AString;

when Empty =>
null;

end case;
end record;

results : results result
I result

result : RESULTSTART_TOKEN SORT_ID_TOKEN

--TextIO.Put_Line("Parsing term with sort: " & YYTextVal.s);
TermRangeSort := AStrings.to-a(YYtext_Val.s);
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term

--Text_IO.New_Line;
10_List_.Ptr.Output := new Term;
--Text_IO.Put_Line("Made a new Term for the Output field");

--Te xtI. Put-.Lin e('ltts Op-.Name is: " & $4.TermVal.Op_.Name.s);
10_List_.Ptr. Output := $4.Term..VaI;
--Text_IO.Put_LineC'Assigned the term to the Output field");

10_List_Ptr. Output. Range..Sort :=AStrings.to a(Term...Range-.Sort. s);
IO-List-Ptr := 10_Li stPtr. Next;
--Text_IO.Put_Line("IQ..List has been updated.");

TermCount := TermCount + 1;)

RESULTENDTOKEN

term : simple-..term
$$=(key => Rterm, TermVal => new Term);

$$.TermVal := $1.TermVal;
--TextIO. PutLine(" Parsed a Simple Term: " & $$.Term-Val.Op..Name.s);

I if .then-.else
1$ =(key => Rterm, TermVal => new Term);

$$.Term..Yal := $1.Term..VaI,)

I term -with..args
($$ := (key => Rterm, Term_Val => new Term);
$$.Terni..VaI := $ 1.TermVa];

--Text_IO.Put_Line("Assigned: " & $1.Term...VaI.Op...Name.s & " to 'term'.");

if then-else : IFTOKEN term THENTOKEN term ELSETOKEN term FlTOKEN
($=(key => Rterm, Term_Va] => new Term);
$$.TermVal.Op-.name := AStrings.to..a("if-then-else");
$$.Term_-VaI.RangeSort := AStrings.to-a("Bool");

$$.TermVaI.Num..args := 3;
$$.TermVal.Arguments1) := new Term;
$$.TermVal.Arguments(1):= $2.Ter'mYal;
$$.Term-Val.Arguments(2) := new Term;
$$.Term -Val.Arguments(2) := $4.Term...Val;
$$.Term-Val.Arguments(3) := new Term;
$$.TermVal.Arguments(3) := $6.Term..YaI;)

term..with-args : OP-IDTOKEN

* ($1 := (key => Op, Op-.Name => YY~ext-Val);)

'('termjlist ')'



($ =(key => Rterm, Termyal => new Term);
$$.Termal.Op..Name :=$ 1.Op-Nanie;
$$.Term-Val.Num Args: $4.Count;
$$.TermYal.Arguments: $4.TermnList_Val;
$$.TermVal.Range_Sort: Get-.RangeSort($$.TermVal,
TesLSet, FormalSpec);
--TextIO. Put..Line("Fini shed parse (term-with-args) of: "&

- $$.TermVal.Op-Name.s);

term-~list :termjlist ',' term
($ =(key => Rterm...List, Count => $1.Count + 1,

TermLisL~al => $1.Term-.List~al);
$$.TermListy.al($$. Count) := new Term;
$$.TermLi st..al($$. Count) := $3.TermVal;)

I term
($ =(key => Rterm-.List, Count => 1,
Term-List Val =>

(1..TermDefinitionPkg.Max_.Arguments => null));
$$.Term-.List.Yal(l) :=new Term;
$$.Term-.List.Yal(1) $= $.Ternial;)

simplej..erm
NEG-JNT.rOIKEN

($ =(key => Rterm, Term-Val => new Term);
$$.Term..Val.Qp..Name := YYTextLVal;
$$.TermVal.Range-.Sort := &..Strings. toa('Int");
--Text-IO.PuLLine('The Op id is: "~ & YYTextVal.s);

I FLOAT-TOKEN
($ =(key => Rterm, TermYal => new Term);

$$.Term_-Val.Op..Name := YYTextLal;
$$.Term..Val.Range-.Sort := A_.Strings.to-.a("Float");
--TextIO.Puk.Line("The Op id is: " & YYTextVal.s);

I NAT-.TOKEN
($ =(key => Rterm, Termyal => new Term);

$$.Term - al.Op..Name := YYText~al;
if YYTextVal.s = "0" then

$$.TermVal.RangeSort := A,..Strings.to-a("Zero");
else

$$.Term3Tal.Range..Sort := A..Strings.to..a("Nat");
end if;

--Text_IO.Put.Line("The Op id is: "& YYTextVal.s);

I OPjDffOKEN
($ =(key => Rterm, Term-Val => new Term);

$$.TermVal.Op_,Name := YYText-.Val;
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$$.Term...al.Range_.Sort: Get-.Range.Sort($$.Term-jVal,
Test..Set, FormalSpec);
--TextjIO.Put-Line("The Op id is: "& YYText..Val.s);

with Term-.Derinition-'kg, Op_.Defns-Pkg, Formal-Spec..Object, A...Strings;

use TermDefinition..Pkg, 0pDefns..Pkg, Formal-Spec.Obj ect;

package term..parser is

echo : boolean := false;
number..of~errors : natural := 0;

procedure Parse..Output..Terms
(New...Name :in A-Strings.AS.tring;
Form'alSpec :in FormalSpec..Def;
TestSet :in Test_-SeLDef;
IQList :in out IO...List..Def);

end term...parser;

with termparsejtokens, termparse..goto, termparse..shift..reduce;
with termjex, Text_1O, term-ex..dfa, termjex..io, A..Strings;
with TermDefinition-.Pkg, OpDefnsj'kg, Formal-Spec_.Obj ect;

use termparse_tokens, termparse..goto, termparse..shift reduce;
use termjlex, Text_1O, A..Strings;
use Term-Definition_Pkg, Op...DefnsPkg, Form alSpecObj ect;

package body term...parser is

procedure yyerror ( s: in string := "syntax error") is
space : integer;

begin
number _of~errors := number-of~errors + 1;
Text-IOnew-line;
TextIO.put("Line" & integer'image(lines-1) W": )
Textj 0. put~jin e(term-je xdfa.yytext);
space: =integer(term-lex-dfa.yytext'length)+integer'image(lines)'ength+5;
for i in 1 .. space loop

end loop;
putjine('A syntax error");

end yyerror;

function Get_.Range..Sort
(A&.Term: in Term-.Access;



TestSet :in Test-Set_.Def,
FormalSpec :in FormalSpec_.Def) return A,_Strings.A..String is separate;

procedure Parse..Output-.Terms
(New._.Name :in A.Strings.A..String;
FormalSpec :in FormalSpec..Def;
Test..Set in TestSet..Def;
IO..List in out I0...List..Def) is

IQ..List .Ptr :I0..List-Def,
Term...Range-.Sort A_Strings.&_String;
Term..Count :Natural := 0;

##%procedure..parse

begin --Parse...OutpuLterms
IO..List_.Ptr :=O1_List;
Term-.Lex-IO.Open-nput(New,.Name s);
yyparse;
Term...LexIO.CloseInput;
TextIO.New_.Line;
Text_1O.PutLine("Parsed" & Natural'Image(Term..Count) & "terms.");

end Parse...Output-Terms;
end term..parser;

-- Get_.Range_.Sort tries to determine the range sort of a term being parsed

with Text_10;
with Subsort;

separate (Term...Parser)
function Get...Range_.Sort

(&Term : in Term..Access;
TesL..Set :in TestSetDef,
Formal-.Spec :in FormalSpec..Def) return A..Strings.A..String is

Result : A_.Strings.A..String := &..Strings. to..a("Unknown")
Signature_.Found,
Domain...Match :Boolean :=false;
Op-.Def :Op...DefnType;

procedure Check...Ops(Op-.Sequence :Op-.Defn-.Seq..Pkg.Sequence) is separate;

begin
--Text-jO.Put-Line("Checking range sort for: " & A&Term.0pLName.s &"")
if ATerm.NumArgs = 0 then -- check true, false, and constants

if (&..Term. Op..Name. s = "true") or (A..Term.Op_.Name.s = "false") then
Signature-.Found := true;
Result := AStrings.to-.a("Bool");

else -- check constants
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for x in Test..Set.SortIndex'Range loop
for y in L..Con st-.Seq-Pkg. Length(Te st_Set.

Sortjndex 'x).Constants) loop
if A_.Term.Op...Name.s = Con st_Seq-Pkg. Fetch

(Test.Set.Sort..jndex(x).Constants, y).s then
SignatureFound :=true;
Result := A..Strings.to...a(TestSet.Sort..Index(x).SortName. s);
exit;

en d if;
end loop;
exit when Signature-Found;

end loop;
end if;

end if,

-- May need to check the op..definitions
if not Signature-.Found then

--TextIO.Put.Line("Checking the export ops.");
Check-.Ops(FormalSpec. Op...Defns);

end if;

-- May need to check the hidden ops
if not Signature-..Found then

--Text_IO.PutLine("Checking the hidden ops.");
Check-.Ops(Formal-Spec.Hidden..Ops);

end if;

return Result;
end Get_.Range_.Sort;

-Check..Ops compares Op definition structures to term structures to support the

-Get_.Range_.Sort procedure

with Unchecked-Deallocation;

separate (Term-.Parser.GetRange..Sort)
procedure Check_.Ops

(Op...Sequence :Op-.Defn...Seq'kg. Sequence) is

First, Second A..Strings.AString;

procedure Free is new UncheckedDeallocation(
Object => AStrings.String-yec,
Name => k.StringsA..String);

begin
--TextIO.PutLine("Is" & Natural'Image(A-Term.Num_.Args) &

-- "-"& & Term.Op..Name.s & " among: ");

for x in 1.. .p...Defn..Seq.Ykg. Length (Op..Sequence)
loop
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0p-Def :=p...Defn_.Seq..Pkg.Fetch(Op-.Sequence, x);
--TextjO. PutLine(Natural'Image(Op-.Def.NumParameters) & -

-. & Op...Def.Op-.Name.s & "");
if (&Term. Op-Name. s = Op...Def.OpName.s) and

(A..erm.NumArgs = Op...Def.Num-.Parameters) then
Domain_.Match :=true;
for y in 1. .ATerm.NumArgs
loop

First := A..Strings.Upper-to-.Lower
(A..Term.Arguments(y).Range..Sort);

Second :=..&Strings. Upper toLower(Pair-.Sequence..Ykg. Fetch
(Op-.Def.Domain..Sorts, y).SortName);

if (First.s /= Second.s) and then not Subsort(First, Second) then
Domain-Match :=False;
exit;

end if;
Free(First);
Free(Second);

end loop;
if Domain-Match then

Signaturej'ound :=true;
--TextjO0.Put.Line("Found the right signature!");
Result :=A_Strings.to..a(Op..Def.Range_.Sort. s);
exit;

end if;
end if;

end loop;
end Check...Ops;

D. PROLOG SOURCE CODE

-The following Prolog code, from the file maprules, will determine the mappings
-between two formal specifications given their transformed signatures.

startup :- compile(library(basics)), unix(argv([A,B,C])), [A], [B],
open(C, write, OutStream), query(OutStream), close(OutStream), halt.

startup :- halt.

store(OutStream, L) :- write(OutStream, L), nl(OutStream).

unique([j).
unique([X I T]) :- \+member(X, T), unique(T).

--Notes
--Findrnappings finds a correspondence between two specification
--signatures represented as Prolog predicate expressions.

--To create a findmappings executable:
Enter Prolog.
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Load maprules file with I ?- [maprules].
Save state with I ?- save-.program(findmappings, startup).
Halt prolog with I? halt.

E. LISP SOURCE CODE

The Lisp source code contained in this section is modified Lisp code extracted from the
OBJ3 environment [SR188]. It is intended to be imported into each OBJ3 session to provide
increased functionality.

in new-objects

-- myprint$op..brief prints operator definitions in a simple format
eval-quiet

(defun myprint$op_..brief Cop)
(princ "op ")
(print$ simple.princ..open (operator$name op))
(princ " :"
(when (operator$arity op)
(print$ sortjistopen obj$current-module (operator$arity op))
(princ
(princ ">"

(print$sort_name obj$current _module (operator$coarity op)))

-- print-ops prints a series of op definitions
eval-quiet

(defun print-ops C
(print$next)
(princ "!!!ops')
(let ((mod *mod_eval$$last..module*) (omit *prjnt$jgnorernods*))
(when (module$ operators mod)

(let ((obj$current_module mod))
(dolist (op (module$operators mod))
(unless (let ((opmod (operator$module op)))
(and (not (eq mod opmod)) (member opmod omit)))
(print$next)
(myprint$op..brief op)
(princ"

Cprint$next)
(princ "!!!end-ops")
Cprint$next))

-print-axioms prints all axioms defined for an object
eval-quiet

(defun print-axioms C
(print$next)
Cprinc "!!!axioms")
(let ((mod *mod-eval$$last-.module*) (omit *print$ignore-mods*))

(if Cmodule$is-compiled mod)
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(dolist (op (reverse (module$operators mod)))
(unless (let ((opmod (operator$module op)))

(and (not (eq mod opmod)) (member opmod omit)))
(dolist (r (module$all...ules mod op))

(when (or *print$all eqns* (null (rule$kind r))
(print$next)
(print$rule..rief r)
(princ "."

(when *print$all-eqns *
(dolist (er (rulex$a..extensions r))

(when er
(print$next)
(print$rule..rief er)
(princ "."

(dolist (er (rulex$ac-extension )
(when er

(print$next)
(print$rule..brief er)
(princ "

(dolist (r (reverse (module$equations mod)))
(print$next)
(print$rulebrief r)
(princ

(print$next)
(princ I!!end-axiomis")
(print$next))

-print-sorts prints all of the sorts defined for an object
eval-quiet

(defun print-sorts0
(print$next)
(princ "!!!sorts")
(let ((mod *mod-eval$$lastmodule*))

(when (module$sorts mod)
(let ((so (module$sort..order mod))

(modprs (module$principalsort mod)))
(when modprs

(print$next)
(princ "sort "

(print$sortinfo mod so modprs)
(princ " .)

(dolist (s (reverse (module$sorts mod)))
(unless (or (eq s *obj$sort-Universal*) (eq s modprs))
(print$next)
(princ "sort "

(print$sort~info mod so s)
(princ"

(print$next)
(princ I!!!end -sorts")
(print$next))
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-- print-ps prints the principal sort for an object
eval-quiet

(defun print-ps0
(print$next)
(princ "!H!principal- sort")
(print$next)
(let ((mod *mod-eval$$lastmodule*))

(let ((obj$currentmodule mod))
(print$module-sort~info mod (module$ sort.order mod)

(module$principal..sort mod))
(princ "!en d-prin cipal -sort")
(print$next))))

-print-generics prints the name of the generic parameters defined for a module
eval-quiet

(defun print-generics C
(print$next)
(princ "!!!generics")
(print$next)
(when (module$parameters *mod_eval$$last-.module*)

(dolist (x (module$parameters *mod-eval$$last~module*))
(princ (car (module$name (cdr x))))
(print$next)))

(princ "!!!end-generics')
(print$next))

--print-mod-name prints the name of a module
eval-quiet

(defun print-mod-name C
(print$next)
(princ "!!!module-name")
(print$next)
(let ((mod *mod-eval$$last-module*))

(let ((obj$current..module mod))
(print$mod_ name mod)
(print$next)
(princ "!!!end-module-name")
(print$next))))

-- do-red-loop invokes a reduction loop to reduce a series of terms
eval-quiet

(defun do-red-loop C
(print$next)
(princ '!!!red-loop")
(print$next)
(ci$red-loop *mod..eval$$last-.module*)
(princ I!!erd-red-loop")
(print$next))

-- ci$red performs a reduction on a single term
eval-quiet
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(defun ci$red (mod preterm)
(let ((obj$current._.module (if (consp mod) (modexp...eval$eval mod) mod)))

(let ((res
(rew$!normalize (parse$parse mod preterm *obj$sortUniversal*))))
(princ "!!!result")
(terpri)
(print$short..sort..name (term$sort res))
(terpri)
(let ((*show-retracts* nil)) (term$print res))

(that$set res)
(terpri)
(princ "!!!end-result")
(terpri))))

E. OBJ3 PRDFNDOBJECTS

This section contains definitions of the predefined OBJ3 objects used in query by

consistency, which are simply prefix reformulations of the predefined objects provided by

OBJ3 [SR188].

obj TRUTH is
protecting TRUTH-VALUE .
protecting UNIVERSAL.
op if-then-else :Bool Universal Universal -> Universal

[polymorphic obj..BOOL$ii~resolver intrinsic strategy (1 0)
gather (& & &) prec 0] .

op ==Universal Universal ->Bool [strategy (1 2 0) prec 511.
op ==Universal Universal ->Bool [strategy (1 2 0) prec 51].
var XU Universal.
var YU Universal .
eq if-then-else(true, XU, YU) =XU.

eq if-then-else(false, XU, YU) = YU.
beq ==(XU, YU) =(obj..bool$coerce_to bool (term$equational-equal xu
yu)).

beq =/=(XUJ, YU) =(obj..bool$coerce-to-bool (not (term$equational.equal
xu yu)))

endo

*** Note that the object BOOL contains a new operator prove which is used to make
equivalence checks between terms.

obj BOOL is
protecting TRUTH.
op and :Bool Bool -> Bool [assoc comm idr: true

siat (12 0)
gathier (e E) prec 551.

op or :Boo] Bool -> Bool [assoc comm idr: false
strat (12 0)
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gather (e E) prec 59].
op xor :Bool Bool -> Boal [assoc comm idr: false

strat, (12 0)
gather Ce E) prec 57].

op not: Bool -> Bool [prec 53].
op implies :Bool Bool -> Bool [gather (e E) prec 6 1].
op prove :Universal Universal -> Bool [strat (1 0)]
var A: Bool .
var B :Bool.
eq and(false, A) = false .
eq or(true, A) = true .
eq xor(true, true) = false .
eq not(true) =false.
eq not(false) =true .
eq implies(A, B) =or(not(A), B).
eq prove(XUYU) = =quote(XU), quote(YU)) .

endo

obj NZNAT is
bsort, NzNat

(obj_.NZNAT$is..NzNat~token obj-NZNAT$ createNzNat prin 1
objLNZNAT$is..NzNat) .

protecting BOOL.
op sum: NzNat NzNat ->NzNat [assoc comm prec 33].
op duff : NzNat NzNat ->NzNat [comm] .
op quot: NzNat NzNat ->NzNat [gather (E e) prec 31].
op less : NzNat NzNat ->Bool [prec 5 1].
op lesseq -NzNat NzNat -> Bool [prec 511.
op gtr : NzNat NzNat -> Bool [prec 5 1].
op gtreq :NzNat NzNat -> Bool [prec 5 1].
op succ :NzNat -> NzNat [prec 15].
op mult: NzNat NzNat -> NzNat [assoc comm prec 31 idr: 1].
var NN NzNat .
var NM NzNat.
bq sum(NN, NM) = (+ NN NM).
bq diff(NN, NM) = (if (= NN NM) 1 (abs (- NN NM))).
bq mult(NN, NM) =(* NN NM).
bq quotCNN, NM) =(if C> NN NM) (truncate NN NM) 1) .
bq Iess(NN, NM) k CNN NM) .
bq lesseq(NN, NM) = (<= NN NM).
bq gtr(NN, NM) = (> NN NM).
bq gtreq(NN, NM) = (>= NN NM).
bq succ(NN) = (1+ NN).

endo

obj NAT is
bsort Nat

(objLNAT$is-.Nat..token obj..NAT$create_.Nat prin 1
obj..NAT$is-.Nat) .

protecting NZNAT .
bsort Zero
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(objNAT$isZerojtoken objNAT$createZero prin1
obj_NAT$isZero).

subsorts NzNat < Nat.
subsorts Zero < Nat.
op sum : Nat Nat -> Nat [assoc comm idr: 0 prec 33].
op sd : Nat Nat -> Nat [comm].
op mult: Nat Nat -> Nat [assoc comm idr: 1 prec 31].
op quo: Nat NzNat -> Nat [gather (E e) prec 31].
op rem: Nat NzNat -> Nat [gather (E e) prec 31].
op divides: NzNat Nat -> Bool [prec 51].
op less : Nat Nat -> Bool [prec 51].
op lesseq: Nat Nat -> Bool [prec 51].
op gtr : Nat Nat -> Bool [prec 51].
op gtreq : Nat Nat -> Bool [prec 51].
op succ Nat -> NzNat [prec 15].
op pred NzNat -> Nat [prec 15].
var M: Nat.
var N: Nat.
var NN: NzNat.
bq sd(M, N) = (abs (- M N)).
eq mult(N, 0) = 0.
bq quo(M, NN) = (truncate M NN).
bq rem(M, NN) = (rem M NN).
bq divides(NN, M) = (= 0 (rem M NN)).
eq less(N, 0) = false.
eq less(0, NN) = true.
eq lesseq(NN, 0) = false.
eq lesseq(0, N) = true.
eq gtr(O, N) = false.
eq gtr(NN, 0) = true.
eq gtreq(0, NN) = false.
eq gtreq(N, 0) = true.
eq succ(0) = 1.
bq pred(NN) = (- NN 1).

endo

obj TUPLE2[C1:: TRIV, C2:: TRIV] is
sort Tuple2.
op make: Elt.C1 Elt.C2 -> Tuple2.
op first: Tuple2 -> Elt.C1.
op second: Tuple2 -> Elt.C2.
var el : Elt.C1.
var e2: Elt.C2.
eq first(make(el, e2)) = el.
eq second(make(el, e2)) = e2.

endo

obj TUPLE3[C1 :: TRIV, 2 TRIV, C3 TRW] is
sort Tuple3.
op make: Elt.C1 EItC2 Elt.C3 -> Tuple3.
op first: Tuple3 -> EILt.C1.
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op second: Tuple3 -> Elt.02.
op third: Tuple3 -> Elt.C3.
var el : Elt.C1 .
var e2: Elt.C2.
var e3: Elt.03.
eq first(make(el1, e2, e3)) = el1.
eq second(make(el, e2, e3)) = e2.
eq third(make(el, e2, e3)) = e3.

endo

obj TUPLE4IC1 :: TRIV, 02 :: TRWV, 03 TRWV, 04 TRW] is
sort Tuple4.
op make: Elt.C1 Elt.02 Elt.03 Elt.C4 -> Tuple4.
op first: Tuple4 -> Elt.C 1.
op second: Tuple4 -> Elt.C2.
op third: Tuple4 -> Elt.03.
op fourth :Tuple4 -.> Elt.C4.
var el :Elt.C1 .
var e2: Elt.02.
var e3: Elt.C3.
var e4 : Elt.04.
eq first(make(el, e2, e3, e4)) = el.
eq second(make(el, e2, e3, e4)) = e2.
eq third(make(el, e2, e3, e4)) = e3.
eq fourth(make(el, e2, e3, e4)) = e4.

endo

obj INT is
bsort Int

(objINT$is_mt~token obj-INT$create..jnt prini
objINT$isjlnt) .

bsort Nzlnt
(objINT$isNzlnt~token obj-INT$createNzlnt prin 1
obj-jNT$isNzlnt) .

protecting NAT .
subsorts Nat < Int.
subsorts NzNat < Nzlnt < Int.
op inverse: nt -> Int Iprec 151 .
op inverse : Nzlnt -> Nzlnt [prec 15].
op sum : Int Int -> Int [assoc comm idr: 0 prec 33].-
op duff : Int It -> Int [gather (E e) prec 33] .
op mult : Int Int -> Int [assoc comm idr: 1 prec 3 1].
op mult : Nzlnt Nzlnt -> Nzlnt [assoc comm prec 31].
op quo : Int Nzlnt In t [gather (E e) prec 31].
op rem : Int Nzlnt In t [gather (E e) prec 31].
op divides : Nzlnt Int -> Bool [prec 5 1].
op less : Int It -> Bool [prec 5 1].
op lesseq : Int Int -> Bool [prec 5 1].
op gtr : Int t-> Bool [prec 511.
op gtreq : bIt Int -> Bool [proc 51].
op succ : Int -> Int [proc 151.
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op pred : Int -> Int [prec 151.
vars I J Int.
var NJ: NzInt.
bq inverse(I) = (- I).
bq sum(I) = (+ I J).

*** bql-J=(-IJ).
eq dif(IJ) = sum(I, inverse(J)).
bq mult(IJ) =(* I J).
bq quo(I,NJ) = (truncate I NJ).
bq rem(INJ) = (rem I NJ).
bq divides(NJ,I) = (= 0 (rem I NJ)).
bq less(IJ) = (< I J).
bq lesseq(I,J) = (<= I J).
bq gtr(IJ) = (> I J).
bq gtreq(I,J) = (>= I J).
eq succ(I) = sum(1,I).
eq pred(I) = difIR, 1).

endo

obj FLOAT is
bsort Float

(objFLOAT$isFloat token objFLOAT$createFloat objFLOAT$print_Float
objFLOAT$isFloat).

pr BOOL.
op inverse : Float -> Float [prec 15].
op sum : Float Float -> Float [assoc comm prec 33].
op diff: Float Float -> Float [gather (E e) prec 33].
op mult: Float Float -> Float (assoc comm prec 313.
op div : Float Float -> Float [gather (E e) prec 311.
op rem Float Float -> Float [gather (E e) prec 31].
op exp Float -> Float.
op log: Float -> Float.
op sqrt: Float -> Float.
op abs : Float -> Float.
op sin : Float-> Float.
op cos : Float -> Float.
op atan : Float -> Float.
op pi : -> Float.
op less : Float Float -> Bool [prec 51].
op lesseq : Float Float -> Bool [prec 511.
op gtr : Float Float -> Bool [prec 51].
op gtreq : Float Float -> Bool [prec 51].
vars X Y Z : Float.
bq sum(X, Y) =(+ X Y).
bq inverse(X) = (- X).
bq diff(X, Y) = -X Y) .

bq mult(X, Y) =(* X Y).
bq div(X, Y) = (/X Y).
bq rem(X, Y) = (rem X Y).
bq exp(X) = (exp X).
bq log(X) = (log X).

220



bq sqrt(X) = (sqrt X).
bq abs(X) = (abs X).
bq sin(X) = (sin X).
bq cos(X) = (cos X).
bq atan(X) = (atan X).
bq pi = pi.
bq less(X, Y) = (< X Y).
bq lesseq(X, Y) = (<= X Y).
bq gtr(X, Y) = (> X Y).
bq gtreq(X, Y) = (>=XY).
endo

obj ID is
bsort Id (objID$isId-token objID$createId objID$printId

objID$isId).
pr BOOL.
op less: Id Id -> Bool [prec 51].
var !X !Y: Id.
*** the variable names have been chosen so that they are not Id's
bq less(!X, !Y) = (string< !x !y) .

endo

obj QID is
--- Quoted IDentifier
--- symbols starting with ' character
bsort Id (objQID$isId_token objQID$createId objQID$print_Id

objQID$isId).
endo

obj QIDL is
protecting QID.
pr BOOL.
op less: Id Id -> Bool [prec 51].
var X Y: Id.
bq less(X, Y) = (string< X Y).

endo

G. SUPPORT FILES

The file predef-sorts is a list of all the predefined sorts supported by the current

implementation. This file must be visible for the program to work properly. It is intended

that this file will expand as predefined sorts are added to the environment.

Universal
Nat
Float
Bool
Int
Id
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NzNat
Zero
NzInt

The file predef-terms defines term for predefined sorts, used in building a test-set.

This file must be visible for the system to work properly. It is intended that this file will

expand as predefined sorts and terms are added to the environment. This file is processed

by a lexical analyzer called predef-lex. See Section C.

predef: Zero
constants:
numterms: 1

name: 0
numargs: 0

predef: Nat
constants: natconstl
numterms: 2

name: 0
numargs: 0
name: succ
numargs: 1

name: natconstl
numargs: 0

predef: NzNat
constants: nznatconstl
numterms: 2

name: 1
numargs: 0
name: succ
numargs: 1

name: nznatconstl
numargs: 0

predef: Bool
constants:
numterms: 2

name: true
numargs: 0
name: false
numargs: 0

predef: Int
constants: intconstl
numterms: 3

name: 0
numargs: 0
name: succ
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numargs: 1
name: intconstl
numargs: 0

name: pred
numargs: 1

name: intconstl
numargs: 0

predef: Nzlnt
constants: nzintconstl
numterms: 2

name: succ
numargs: 1

name: nzintconstl
numargs: 0

name: pred
numargs: 1

name: nzintconstl
numargs: 0

predef: Float
constants: floatconstl floatconst2
numterms: 2

name: floatconstl
numargs: 0
name: floatconst2
numargs: 0

predef: Tuple2
constants:
numterms: 1

name: make
numargs: 2

name:!!
numargs: 0
name: !!!
numargs: 0

predef: Tuple3
constants:
numterms: 1

name: make
numargs: 3

name: !!!
numargs: 1)
name: !!!
numargs: 0
name:!!
numargs: 0

predef: Tuple4



constants:
numterms: 1

name: make
numargs: 4

name: !!!
numargs: 0
name: !!!
numargs: 0
name: !!!
numargs: 0
name:!!
numargs: 0

predef: Id
constants: idconstl idconst2
numterms: 2

name: idconstl
numargs: 0
name: idconst2
numargs: 0
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